

PROGRAMMING AND
CUSTOMIZING THE

MULTICORE PROPELLERTM

MICROCONTROLLER

This page intentionally left blank

PROGRAMMING AND
CUSTOMIZING THE

MULTICORE
PROPELLERTM

MICROCONTROLLER
THE OFFICIAL GUIDE

PARALLAX INC.

Shane Avery Chip Gracey Vern Graner
Martin Hebel Joshua Hintze André LaMothe
Andy Lindsay Jeff Martin Hanno Sander

New York Chicago San Francisco Lisbon London Madrid
Mexico City Milan New Delhi San Juan Seoul

Singapore Sydney Toronto

Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States

Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in

a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-166451-6

MHID: 0-07-166451-3

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-166450-9, MHID: 0-07-166450-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a

trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of

infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in

corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (McGraw-Hill) from sources

believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any

information published herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or dam-

ages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors

are supplying information but are not attempting to render engineering or other professional services. If such services are

required, the assistance of an appropriate professional should be sought.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (McGraw-Hill) and its licensors reserve all rights in and

to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to

store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create

derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without

McGraw-Hill s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work

is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED AS IS. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WAR-

RANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM

USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA

HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUD-

ING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work

will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall

be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages result-

ing therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-

cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or sim-

ilar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of

such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in

contract, tort or otherwise.

For Ellie, my lovely wife.
 S. A.

To my wife Kym, my children Nic and Sami,
and my Mom and Dad for all the support.

 V. L. G.

For BJ and Kris, thanks for being so supportive.
 M. H.

For my wife Crystal and son Hunter.
 J. M. H.

To inventors everywhere.
 A. L.

For Stacy, Kaitlin, and Kaylani
who were wonderfully supportive

despite being deprived of my attention.
 J. M.

For Mami and Papi, thanks for everything.
 H. S.

This page intentionally left blank

vii

CONTENTS

About the Authors xi

Foreword xv

Introduction xvii

Chapter 1 The Propeller Chip Multicore Microcontroller 1
Introduction 1
Multicore Defi ned 2
Why Multicore? 3
Multicore Propeller Microcontroller 3
Summary 14
Exercises 14

Chapter 2 Introduction to Propeller Programming 15
Introduction 15
What’s the Secret? 16
Ready to Dive In? 17
Let’s Get Connected! 17
Your First Propeller Application 22
A Blinking LED 25
RAM versus EEPROM 27
A More Powerful Blink 28
All Together Now 32
Wrapping It Up 34
Timing Is Everything 38
Sizing the Stack 41
Propeller Objects and Resources 45
Summary 48
Exercises 49

Chapter 3 Debugging Code for Multiple Cores 51
Propeller Features That Simplify Debugging 52
Object Design Guidelines 56
Common Multiprocessor Coding Mistakes 58
Survey of Propeller Debugging Tools 78
Debugging Tools Applied to a Multiprocessing Problem 86
Summary 116
Exercises 117

Chapter 4 Sensor Basics and Multicore Sensor Examples 119
Introducing Sensors by Their Microcontroller Interfaces 119
On/Off Sensors 122
Resistive, Capacitive, Diode, Transistor, and Other 137
Pulse and Duty Cycle Outputs 144
Frequency Output 153
Voltage Output 156
Synchronous Serial 168
Asynchronous Serial 174
Questions about Processing and Storing Sensor Data 182
Summary 187
Exercises 188

Chapter 5 Wirelessly Networking Propeller Chips 189
Introduction 189
Overview of Networking and XBee Transceivers 191
Hardware Used in This Chapter 193
Testing and Confi guring the XBee 193
Sending Data from the Propeller to the PC 204
Polling Remote Nodes 208
Using the XBee API Mode 214
A Three-Node, Tilt-Controlled Robot with Graphical Display 221
Summary 231
Exercise 232

Chapter 6 DanceBot, a Balancing Robot 235
Introduction 235
The Challenge 235
Building the DanceBot 238
Controlling the DanceBot 255
Summary 255
Exercises 255

Chapter 7 Controlling a Robot with Computer Vision 257
Introduction 257
Understanding Computer Vision 258
PropCV: A Computer Vision System for the Propeller 259
Apply Filters and Track a Bright Spot in Real Time 265
Following a Line with a Camera 270
Track a Pattern 272
State-of-the-Art Computer Vision with OpenCV 274
OpenCV and Propeller Integration 276
Summary 279
Exercises 280

Chapter 8 Using Multicore for Networking Applications 281
Introduction 281
Ethernet and Internet Protocols 281
EtherX Add-in Card for the Propeller-Powered HYDRA 287

viii CONTENTS

Creating a Simple Networked Game 312
Summary 318
Exercises 318

Chapter 9 Portable Multivariable GPS Tracking and
Data Logger 319

Introduction 319
Overview of the Sensors 322
Main Spin Object 344
Experiment 346
Summary 351
Exercises 352

Chapter 10 Using the Propeller as a Virtual Peripheral
for Media Applications 353

Introduction 353
Overview, Setup, and Demo 354
System Architecture and Constructing the Prototype 362
Remote Procedure Call Primer 366
Virtual Peripheral Driver Overview 370
Client /Host Console Development 372
Exploring the Command Library to the Slave/Server 387
Enhancing and Adding Features to the System 389
Exploring Other Communications Protocols 389
Summary 396
Exercises 396

Chapter 11 The HVAC Green House Model 399
Introduction 399
Exploring the Problem 400
The HVAC Green House Model 402
Summary 423
Exercises 425

Chapter 12 Synthesizing Speech with the Propeller 427
Introduction 427
Using Spectrographs to “See” Speech 427
Exploring the VocalTract Object 431
Summary 441
Exercises 442

Appendix A Propeller Language Reference 443
Categorical Listing of Propeller Spin Language Elements 443
Categorical Listing of Propeller Assembly Language 449
Reserved Word List 457

Appendix B Unit Abbreviations 459

Index 463

CONTENTS ix

This page intentionally left blank

xi

ABOUT THE AUTHORS

Shane Avery graduated from Cal Poly, San Luis Obispo,
with a bachelor’s degree in computer engineering and from
Cal State Northridge with masters in electrical engineering.
His graduate work focused on system-on-chip design in
FPGAs and ASICs. At Ziatech/Intel he debugged single-
board CompactPCI computers for the telephony industry.
He then worked with a toy company, Logic-Plus, developing
the Verilog code for the FPGA inside a toy video camera that
would insert static images onto the background. Currently,
he works for the United States Navy, designing and devel-

oping embedded hardware for new military weapons. This year he began his fi rst
company focusing on embedded electronics, called Avery Digital.

Chip Gracey, President of Parallax Inc., has a lifelong
history of invention and creativity. His early programming
projects included the famous ISEPIC software duplication
device for the Commodore 64 and various microprocessor
development tools, yet he is most well-known for creating
the BASIC Stamp®. Chip Gracey is the Propeller chip’s
chief architect and designer. His formal educational back-
ground is nearly empty, with all of his experience being the
result of self-motivation and personal interest. Chip contin-
ues to develop custom silicon at Parallax.

Vern Graner has been in the computer industry since being
recruited by Commodore Business Machines in 1987. He
has had a lifelong relationship with electronics, computers,
and entertainment encompassing multiple fi elds including
animatronics, performance art, computer control, network
systems design, and software integration. As president of
The Robot Group Inc., Vern’s work has been featured at
Maker Faire, First Night Austin, SxSW, Linucon, Dorkbot,
Armadillocon, and even in SPIN magazine. In 2007, he was
awarded The Robot Group’s DaVinci Award for his contri-
butions to the arts and technology community. Though some

of his writings have been featured in SERVO magazine, he is currently best known
for his regular contributions to Nuts and Volts magazine as the author of the monthly

column “Personal Robotics”. He currently is employed as a senior software engineer
in Austin, Texas.

Martin Hebel holds a master of science in education (MS)
and bachelor of science in electronics technologies (BS),
obtained from Southern Illinois University Carbondale
(SIUC) following 12 years of service as a nuclear technician
on submarines. He is an associate professor in Information
Systems and Applied Technologies at SIUC, instructing in
the Electronic Systems Technologies program where he
teaches microcontroller programming, industrial process
control, and networking. His research in wireless sensor
networks, using controllers including the Propeller chip, has
led to agricultural research with SIUC’s agricultural sciences,
University of Florida, and funding through a USDA grant.

He has also collaborated with researchers at the University of Sassari, Italy in
biological wireless monitoring using parallel processing, which was presented at a
NATO conference in Vichy, France.

Joshua Hintze graduated from Brigham Young University
with bachelor’s and master’s degrees in electrical engineer-
ing. His main research focus was unmanned aerial vehicles
where he helped create the world’s smallest fully func-
tional autopilot (patent received). Before graduating, Josh
took a research position at NASA Ames Research Center
in Moffett Field, California. At NASA, Josh designed
algorithms for landing autonomous helicopters by scan-
ning potential landing locations with stereo cameras and
machine vision algorithms. Josh is cofounder of Procerus

Technologies that builds and ships autopilots all over the world, many of which end
up in military applications. He has written numerous published articles and was the
author of “Inside The XGS PIC 16-Bit,” published by Nurve Networks.

André LaMothe holds degrees in mathematics, computer
science, and electrical engineering. He is a computer scientist,
3D game developer, and international best-selling author. He
is the creator of Waite Group’s “Black Art Series” as well
as the series editor of Course PTR’s “Game Development
Series.” Best known for his works in computer graphics and
game development, he is currently the CEO of Nurve Networks
LLC, which develops and manufactures embedded systems
for educational and entertainment channels. Additionally, he
holds a teaching position currently at Game Institute.

xii ABOUT THE AUTHORS

Andy Lindsay is an applications engineer and a key
member of Parallax’s Education Department. To date, Andy
has written eight Parallax educational textbooks, including
What’s a Microcontroller?, Robotics with the Boe-Bot, and
Propeller Education Kit Labs: Fundamentals. These books
and their accompanying kits have gained widespread accep-
tance by schools in the United States and abroad, and some
have been translated into many languages. Andy earned a
Bachelor of Science in electrical and electronic engineer-
ing from California State University, Sacramento. He has

worked for Parallax Inc. for over ten years, where he continues to write, teach, and
develop educational products.

Jeff Martin is Parallax’s senior software engineer and
has been with the company for 13 years and counting. He
attended California State University Sacramento, studied
many areas of computer science, and earned a Bachelor of
Science in system’s software. In 1995, Jeff visited Parallax
to purchase a BASIC Stamp 1. He rapidly learned and
mastered the original BASIC Stamp and was shortly after
offered a position to support it and other Parallax products.
He is currently in the R & D department and is responsible
for Parallax software IDEs, key printed manuals, and hard-

ware maintenance for core product lines. Jeff collaborates closely with Chip Gracey
and the rest of the R & D group on the Propeller product line, from hardware to soft-
ware and documentation.

Hanno Sander has been working with computers since
he programmed a lunar lander game for the z80 when he
was six. Since then he graduated from Stanford University
with a degree in computer science and then started his
corporate career as an Internet entrepreneur. He moved to
New Zealand in 2005 to spend time with his growing family
and developed sophisticated, yet affordable robots, starting
with the DanceBot. His technical interests include computer
vision, embedded systems, industrial control, control theory,
parallel computing, and fuzzy logic.

About Parallax Inc.
Parallax Inc., a privately held company, designs and manufactures microcontrollers,
embedded system development tools, small single-board computers, and robots that
are used by electronic engineers, educational institutions, and hobbyists.

ABOUT THE AUTHORS xiii

This page intentionally left blank

xv

FOREWORD

In the early and mid-1970s, semiconductor companies offered only a few rudimentary
microprocessors that most people have never heard of or have long forgotten. Now,
though, engineers, scientists, entrepreneurs, students, and hobbyists can choose from
a wide spectrum of processors, some of which include two, four, or more processor
“cores” that let a chip perform several tasks simultaneously. Then why do we need a
new type of eight-core processor developed by Parallax, a small company in Rocklin,
California? The reasons are many.

The Propeller chip takes a different approach and offers developers eight processors
with identical architectures. That means any 32-bit processor, or cog, can run code that
could run on any other cog equally well. You can write code for one cog and simply
copy it to run exactly the same way on another cog. This type of copy-and-paste
operation works well if you have, say, several identical servos, sensors, or displays
that run on one Propeller chip.

And unlike many multicore devices, a Propeller chip needs no operating system, so
you don’t have to learn Linux, Windows CE, VxWorks, or another operating system
to jump in and write useful code. Code-development tools are free, and you don’t need
add-ons that cut into your budget. The many projects in this book will help you better
understand how to take advantage of the Propeller chip’s capabilities.

The Propeller chip also simplifi es operations and coordination of tasks because it
offers both shared and mutually exclusive resources. The former includes the chip’s 32
I/O pins and its system counter, which gives all cogs simultaneous access to infor-
mation used to track or time events. Any cog can control any I/O pin, which means
you can assign I/O pins as needed and easily change assignments late in a project
schedule.

A central “Hub” controls access to the mutually exclusive resources such that each
cog can access them exclusively, one at a time. Think of the Hub as a spinner—or
propeller!—that rotates and gives each cog access to key resources for a set time.
Hub operations use the Propeller Assembly language instructions rather than the aptly
named higher-level Spin language. The Propeller’s main memory is one of the mutu-
ally exclusive resources. You would not want two programs to try to access memory
simultaneously or to modify a value in use by another cog.

The Propeller chip and Parallax offer users another, less tangible, asset: a devoted
cadre of users and developers. Parallax has an active Propeller Chip forum, with more
than 430 pages of posts that go back to early 2006. Parallax forum membership
has reached more than 17,000 registered members. Run a Google search for
“Parallax Propeller,” and you’ll fi nd individual projects, discussions, products, and
code. If you run into a problem getting your hardware or software to work, someone

on the Internet usually has a suggestion or comment—often within a few minutes.
Parallax also offers many add-on devices, such as accelerometers, ultrasonic range
sensors, GPS receivers, and an image sensor, that help bring projects and designs to
fruition rapidly.

Over the years I have worked with many types of processors, from early eight-bit
devices to new ARM-based chips. But none of the chip suppliers has offered such
a wide variety of practical educational information as Parallax offers for its proces-
sors. Anyone interested in the Propeller will fi nd many articles, application notes,
lab experiments, and manuals on the company’s Web site to ensure they get off to a
good start and maintain their interest and momentum as they learn more. I like the
Parallax Propeller chip and have enjoyed working with it, although my coding skills
are still somewhat basic. You’ll like the Propeller, too, even if you only have a basic
curiosity about how computer chips can easily control things in the real world. As you
learn how to measure things such as voltage, temperature, sound, and so on, you’ll
get hooked. The Propeller chip is not only powerful and capable—it’s easy and fun
to work with.

JON TITUS

 Friend of Parallax Inc. and microcomputer inventor
 Herriman, Utah

xvi FOREWORD

xvii

INTRODUCTION

Parallax Inc. brought together nine experienced authors to write 12 chapters on many
aspects and applications of multicore programming with the Propeller chip. This book
begins with an introduction to the Propeller chip’s architecture and Spin programming
language, debugging techniques, and sensor interfacing. Then, the remainder of the
book introduces eight diverse and powerful applications, ending with a speech syn-
thesis demonstration written by the Propeller chip’s inventor, Chip Gracey. We hope
you fi nd this book to be informative and inspirational. For more Propeller-related
resources, visit www.parallax.com/propeller, and to join in the conversation with the
Propeller community, visit forums.parallax.com.

ADDITIONAL RESOURCES FOR THIS BOOK

The software, documentation, example code, and other resources cited in the follow-
ing chapters are available for free download from PCMProp directory at ftp://ftp.
propeller-chip.com.

About the Example Code Code listings for projects in this text come from
diverse sources. The Propeller chip’s native languages are object-based, and many
prewritten objects are included with the Propeller Tool programming software or are
posted to the public Propeller Object Exchange at obex.parallax.com.

Copyright for Example Code All Spin and Propeller Assembly code listings
included in this book, including those sourced from the Propeller Object Exchange,
are covered by the MIT Copyright license, which appears below.

Copyright © <year> <copyright holders>
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation fi les (the “Software”) to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

www.parallax.com/propeller

THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT, OR
OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

SPECIAL CONTRIBUTORS

Parallax Inc. would like to thank their team members: Chip Gracey for inventing the
amazing Propeller chip; Ken Gracey for envisioning this book; Joel “Bump” Jacobs
for creating the original cartoons in Chapters 1 and 2; Rich Allred for the majority of
the illustrations in Chapters 1 through 5; Jeff Martin, Andy Lindsay, and Chip Gracey
for authoring their chapters; and Stephanie Lindsay for coordinating production with
McGraw-Hill. Parallax also thanks André LaMothe for authoring his chapter and for
heading up the team of authors from the Propeller community: Martin Hebel, Hanno
Sander, Shane Avery, Joshua Hintze, and Vern Graner. Special thanks go to Jon Titus
for so generously providing the Foreword, and to Judy Bass at McGraw-Hill for fi nd-
ing this project worthwhile and making it happen.

xviii INTRODUCTION

1

1
THE PROPELLER CHIP MULTICORE

MICROCONTROLLER

Jeff Martin

Introduction
In the 1990s, the term “multicore” had more to do with soldering equipment than it did
with computer processors. Though the concept was young and relatively nameless, this
was the time many silicon engineers began focusing their efforts on multiprocessor tech-
nology. By the middle of the following decade, “multicore” had become the industry
buzzword and the fi rst consumer-accessible products arrived on the market. The short
years to follow would mark a time of extreme evolution, innovation, and adoption of
multicore technology that is bound to continue at a fast pace.

So what exactly is multicore and why is it so important? These are just two of the
many questions we’ll answer throughout this book, with insightful examples and excit-
ing projects you can build yourself. We’ll reveal how this technology is changing the
way problems are solved and systems are designed. Most importantly, we’ll show just
how accessible multicore technology is to you.

Caution: This book is a collaboration of many enthusiastic authors who are
eager to demonstrate incredible possibilities well within your reach. Reading this
material may leave you feeling inspired, exhilarated, and empowered to invent
new products and explore new ideas; prepare yourself!

In this chapter, we’ll do the following:

■ Learn what multicore means and why it’s important
■ Introduce the multicore PropellerTM microcontroller
■ Explore Propeller hardware we’ll use throughout this book

2 THE PROPELLER CHIP MULTICORE MICROCONTROLLER

Multicore Defi ned
A multicore processor is a system composed of two or more independent CPUs, usually
in the same die, that achieves multiprocessing in a single physical package (see Fig. 1-1).
Put simply, a multicore chip can do many things simultaneously!

MULTIPROCESSING VERSUS MULTITASKING

Are you thinking “multitasking”? For computers, multitasking is a method of shar-
ing a single CPU for multiple, possibly unrelated tasks. A single-core device that
is multitasking fast enough gives the illusion of things happening at once.

A multicore device, however, achieves true multiprocessing: performing multiple
tasks simultaneously. In comparison, a multicore device can run at a slower speed, con-
sume less power, and achieve better results than a fast-running single-core device can.

In this book we will usually refer to “tasks,” “functions,” and “processes” in the
context of multiprocessing, rather than multitasking.

It may seem quite daunting to get multiple processors all working together in a single,
coherent application. In fact, once upon a time the task was notably treacherous since
it was unclear exactly how to apply multicore technology. Many complex systems
were devised that either stripped developers of power or burdened them with unruly
multithread obstacles.

 Figure 1-1 Close-up of multicore Propeller chip silicon.

Eight individual processors
on same silicon die.

ROM and RAM memory
shared by all processors.

Lucky for us, technique and technology have evolved to give us devices like the
Propeller microcontroller. It is now quite natural to create multicore applications. After
reading this book, you may fi nd yourself wondering how you ever got along without it!

Why Multicore?
Why is multicore so important? After all, thousands of applications have been built
using single-core devices.

While that’s true, despite the successes, there have always been two obstacles imped-
ing progress: asynchronous events and task fi delity.

■ Asynchronous events are things that occur when you least expect them. They are
inherently hard to handle in a timely manner with a single-core device.

■ Task fi delity is the level of attention given to an activity. The lower the fi delity, the
lower the precision with which the task is carried out.

These are two opposing entities, each vying for the precious time of a single pro-
cessor. As asynchronous events increase, the fi delity of existing tasks suffers. As the
demand for task fi delity increases, fewer asynchronous events are handled.

With a single-core device, balancing these two competing demands often means
requiring processor interrupts and specialized hardware. Processor interrupts allow
asynchronous events to be addressed while specialized hardware remains focused on
high-fi delity tasks.

But is that the best solution? It means the “brains” of an application must rely on other
hardware for high-speed tasks and relegate itself to lower-priority tasks while waiting
for the interrupt of asynchronous events. It means systems become more expensive
and complex to build, often with multiple chips to support the demands. It also means
designers have the diffi cult challenge of fi nding the right “special” hardware for the
job, learning that hardware, and dealing with any limitations it imposes, all in addition
to programming the brains of the application in the fi rst place!

Perhaps the best solution is most apparent in our everyday lives. How many times in
your life have you wished there were two of you? Or three or more? Ever needed to “fi nish
that report,” “make that call,” and “do those chores” while being pressed for quality time
with your spouse, friends, kids, or your hobbies? (See Fig. 1-2.)

Wouldn’t it be great, even for a short time, if you could do multiple things at once com-
pletely without distraction or loss of speed? Maybe we cannot, but a multicore device can!

Multicore Propeller Microcontroller
The Propeller microcontroller realizes this dream in its ability to clone its “mind” into
two, three, or even eight individual processors, each working simultaneously with no
distractions. Moreover, it can do this on a temporary or permanent basis with each

MULTICORE PROPELLER MICROCONTROLLER 3

4 THE PROPELLER CHIP MULTICORE MICROCONTROLLER

processor sleeping until needed, consuming almost no power, yet waking in less than
10 millionths of a second to handle events.

CLEAR YOUR MIND OF INTERRUPTIONS

If you know all about interrupts on single-core devices, forget it now! Interrupts
can be troublesome for real-time applications and are nonexistent in the multicore
Propeller. Why? With a device like the Propeller, you don’t need them. Just focus a
processor on a task that needs such handling; it can sleep until the needed moment
arrives and won’t negatively affect the rest of the application’s efforts.

The multicore Propeller is a system of homogenous processors and general-purpose
I/O pins. Learn to use one processor and you know how to use them all. There’s no
specialized hardware to learn for demanding tasks; just assign another processor to the
job. This incredibly useful hardware has inspired many who may otherwise have not
considered multicore technology for an embedded system application.

Tip: Since its inception, multicore technology has continued to evolve to give
us many kinds of devices, tools, and schemes. A quick review of “multicore” on
Wikipedia (www.wikipedia.org) reveals the many ways the term is applied to a
variety of unique hardware designs. We will focus on a solid foundation built with
simple rules and proven results. These concepts can help you regardless of the
multicore platform you use.

 Figure 1-2 Clones can multiprocess!

www.wikipedia.org

CONCEPT

Demanding jobs require a highly skilled team of workers, a fi ne-tuned force that per-
forms in harmony aiming for a single goal. The multicore Propeller wraps this team
of processors into one tiny package. These processors, called cogs, are at your service
waiting to be called upon as the need arises. Both powerful and fl exible, they lie dormant
until needed, sleep and wake on a moment’s notice, or run continuously.

The fl at memory architecture, homogenous processor design, and built-in languages
make for a simple architecture that is easy to learn.

Use in Practice Here’s how you’d use the multicore Propeller microcontroller in
an application.

■ Build a Propeller Application out of objects (see Fig. 1-3).

Tip: Objects are sets of code and data that are self-contained and have a specifi c
purpose. Many objects already exist for various tasks; you can choose from those
and can also create new ones.

■ Compile the Propeller Application and download it to the Propeller’s RAM or
EEPROM (see Fig. 1-4).

■ After download, the Propeller starts a cog to execute the application from Main
RAM, as in Fig. 1-5.

■ The application may run entirely using only one cog or may choose to launch additional
cogs to process a subset of code in parallel, as in Fig. 1-6. Of course, this performs as
explicitly designed into each specialized object by you and other developers.

When the top object is compiled,
all the objects referenced by it are
included in the downloadable
image, called a Propeller Application.

Each object has a specific talent that it
performs when called upon by the
object that references it. Additional
cogs may be started to assist with the
performance, if necessary, as designed.

 Figure 1-3 A Propeller application’s object hierarchy.

MULTICORE PROPELLER MICROCONTROLLER 5

6 THE PROPELLER CHIP MULTICORE MICROCONTROLLER

Tip: If the application was downloaded to EEPROM, it will also start in the same
way whenever a power-up or reset event occurs.

Propeller applications may use multiple cogs all the time or just sometimes, as the
need requires. Cogs may also be activated and then put to sleep (consuming very little
power) so they may wake up instantly when needed.

Tip: The next chapter will take you step-by-step through hardware connections
and an example development process.

An application is
downloaded to
the Propeller’s
RAM, and
optionally, its
external EEPROM.

RAM-only downloads
are useful during
development since
they take less time.
EEPROM downloads
are necessary if the
application should be
retained between
resets or power cycles.

 Figure 1-4 Downloading to the Propeller.

PROPELLER HARDWARE

We’ll briefl y discuss the Propeller chip’s hardware and how it works in the rest of this
chapter, and then you’ll be introduced to multicore programming and debugging in the
following two chapters. What you learn here will be put to good use in the exciting
projects fi lling the remainder of this book.

Packages The Propeller chip itself is available in the three package types shown in
Fig. 1-7.

Upon application launch, a single cog
runs the ROM-based Spin Interpreter
and executes the application from
Main RAM. From there, the
application can launch additional cogs
on Spin or Assembly code, as needed.

 Figure 1-5 Application launch.

Here, the application launches an
additional cog to execute a subset of
the application’s Spin code in parallel.

It may also launch a cog to run
assembly code (not shown).

 Figure 1-6 Additional cog launched on Spin code.

MULTICORE PROPELLER MICROCONTROLLER 7

8 THE PROPELLER CHIP MULTICORE MICROCONTROLLER

Pin Descriptions and Specifi cations Each package features the same set of pins,
with the exception that the surface mount packages (LQFP and QFN) have four extra
power pins (see Fig. 1-8 and Table 1-1). All functional attributes are identical regardless
of package (see Table 1-2).

Architecture Physically, the Propeller is organized as shown in Fig. 1-1, but func-
tionally, it is like that shown in Fig. 1-9.

40-pin DIP package for
prototyping.

44-pin LQFP and QFN
packages for surface mount
production.

 Figure 1-7 Propeller chip’s packages.

 Figure 1-8 Propeller chip’s pin designators.

TABLE 1-1 PIN DESCRIPTIONS

PIN NAME DIRECTION DESCRIPTION

P0 – P31 I/O General-purpose I/O Port A. Can source/sink 40 mA each at
3.3 VDC. Logic threshold is ≈ ½ VDD; 1.65 VDC @ 3.3 VDC

Pins P28 – P31 are special purpose upon power-up/reset but
are general purpose I/O afterwards. P28/P29 are I2C SCL/SDA
to external EEPROM. P30/P31 are serial Tx/Rx to host.

VDD --- 3.3-volts DC (2.7 – 3.3 VDC)

VSS --- Ground.

BOEn I Brown Out Enable (active low). Must connect to VDD or VSS.
If low, RESn outputs VDD (through 5 KΩ) for monitoring; drive
low to reset. If high, RESn is CMOS input with Schmitt Trigger.

RESn I/O Reset (active low). Low causes reset: all cogs disabled and I/O
fl oating. Propeller restarts 50 ms after RESn transitions high.

XI I Crystal Input. Connect to crystal/oscillator pack output (XO left
disconnected) or to one leg of crystal/resonator with X0 con-
nected to the other, depending on CLK register settings. No
external resistors or capacitors are required.

XO O Crystal Output. Feedback for an external crystal. May leave
disconnected depending on CLK register settings. No external
resistors or capacitors are required.

TABLE 1-2 SPECIFICATIONS

ATTRIBUTE DESCRIPTION

Model P8X32A

Power Requirements 3.3 volts DC (max current draw must be ≤ 300 mA)

External Clock Speed DC to 80 MHz (4 MHz to 8 MHz with Clock PLL running)

System Clock Speed DC to 80 MHz

Internal RC Oscillator 12 MHz or 20 kHz (may range from 8 MHz – 20 MHz or 13 kHz
– 33 kHz, respectively)

Main RAM/ROM 64 KB: 32 KB RAM + 32 KB ROM

Cog RAM 512 × 32 bits each

RAM/ROM Organization Long (32-bit), Word (16-bit), or Byte (8-bit) addressable

I/O pins 32 CMOS signals with VDD/2 input threshold

Current Source/Sink per I/O 40 mA

Current Draw @ 3.3 VDC,
70 °F

500 µA per MIPS (MIPS = Freq (MHz) / 4 * Active Cogs)

MULTICORE PROPELLER MICROCONTROLLER 9

 Figure 1-9 Propeller block diagram.

1
0

The cogs (processors) are all alike and work together as a team, sharing access to all
system hardware, main memory, System Counter, confi guration registers, I/O pins, etc.

Let’s look closely at some notable components shown in Fig. 1-9.

Cogs (processors) The Propeller contains eight processors, called cogs, numbered
0 to 7. Each cog contains the same components and can run tasks independent of the
others. All use the same clock source so they each maintain the same time reference
and all active cogs execute instructions simultaneously.

Tip: Propeller processors are called cogs because they are simple and uniform,
like the cogs on gears that mesh with others of their kind to induce change. Their
simplicity assures reliability and their collective delivers powerful results.

Cogs start and stop at runtime to perform independent or cooperative tasks simul-
taneously. As the developer, you have full control over how and when each cog is
employed; there is no compiler-driven or operating system–based splitting of tasks
between multiple cogs. This explicit parallelism empowers you to deliver deterministic
timing, power consumption, and response to the embedded application.

Each cog has its own RAM, called Cog RAM, containing 512 registers of 32 bits
each. Cog RAM is used for both code and data, except for the last 16 special-purpose
registers (see Table 1-3) that provide an interface to the System Counter, I/O pins, and
local cog peripherals.

TABLE 1-3 COG RAM SPECIAL-PURPOSE REGISTERS

ADDRESS NAME TYPE DESCRIPTION

$1F0 PAR Read-Only Boot Parameter

$1F1 CNT Read-Only System Counter

$1F2 INA Read-Only Input States for P31–P0

$1F3 INB Read-Only <reserved>

$1F4 OUTA Read/Write Output States for P3–P0

$1F5 OUTB Read/Write <reserved>

$1F6 DIRA Read/Write Direction States for P31–P0

$1F7 DIRB Read/Write <reserved>

$1F8 CTRA Read/Write Counter A Control

$1F9 CTRB Read/Write Counter B Control

$1FA FRQA Read/Write Counter A Frequency

$1FB FRQB Read/Write Counter B Frequency

$1FC PHSA Read/Write Counter A Phase

$1FD PHSB Read/Write Counter B Phase

$1FE VCFG Read/Write Video Confi guration

$1FF VSCL Read/Write Video Scale

MULTICORE PROPELLER MICROCONTROLLER 11

12 THE PROPELLER CHIP MULTICORE MICROCONTROLLER

When a cog is started, registers 0 ($000) through 495 ($1EF) are loaded sequentially
from Main RAM/ROM, its special-purpose registers are cleared to zero, and it begins
executing instructions starting at Cog RAM register 0. It continues to execute code until
it is stopped or rebooted by either itself or another cog, or a reset occurs.

Hub The Hub maintains system integrity by ensuring that mutually exclusive resources
are accessed by only one cog at a time. Mutually exclusive resources include things like
Main RAM/ROM and confi guration registers.

The Hub gives each cog access to such resources once every 16 clock cycles in a
round-robin fashion, from Cog 0 through Cog 7 and back to Cog 0 again. If a cog tries
to access a mutually exclusive resource out of order, it will simply wait until its next
hub access window arrives. Since most processing occurs internally in each of the cogs,
this potential for delay is not too frequent.

Information: The Hub is our friend. It prevents shared memory from being
clobbered by multiple cogs attempting simultaneous access, which would lead
to catastrophic failure. In Chap. 3, you will see examples of how the Propeller’s
programming languages allow the developer to coordinate read/write timing
among multiple cogs. Search for “Hub” in the Propeller Manual or Propeller Tool
Help (www.parallax.com) to fi nd out more about the Hub.

Memory There are three distinct blocks of memory inside the Propeller chip.

■ Main RAM (32 K bytes; 8 K longs)
■ Main ROM (32 K bytes; 8 K longs)
■ Cog RAM (512 longs × 8 cogs)

Both Main RAM and Main ROM are shared (mutually exclusively) by all cogs, each able
to access any part of those two blocks in turn. Main RAM is where the Propeller Application
resides (code and data); Main ROM contains support data and functions (see Fig. 1-10).
Every location is accessible as a byte (8 bits), word (2 bytes), or long (2 words).

Cog RAM is located inside a cog itself (see Fig. 1-11). Cog RAM is for exclusive
use by the cog that contains it. Every register in Cog RAM is accessible only as a long
(32 bits, 2 words, 4 bytes).

I/O Pins One of the beauties of the Propeller lies within its I/O pin architecture.
While the Propeller chip’s 32 I/O pins are shared among all cogs, they are not a mutu-
ally exclusive resource. Any cog can access any I/O pins at any time—no need to wait
for a hub access window! The cogs achieve this by gating their individual I/O signals
through a set of AND and OR gates, as seen at the top of each cog in Fig. 1-9.

The cog collective affects the I/O pins as described by these simple rules:

■ A pin is an output only if an active cog sets it to an output.
■ A pin outputs high only if the aforementioned cog sets it high.

www.parallax.com

When executing a well-behaved application, the team of cogs has fl exible control
over the I/O pins without causing confl icts between them. A pin is an input unless a cog
makes it an output and an output pin is low unless a cog sets it high.

Tip: An active cog is one that is executing instructions or sleeping. An inactive
cog is one that is completely shut down. Only active cogs infl uence the direction
and state of I/O pins.

System Counter The System Counter is the Propeller chip’s time-base. It’s a global,
read-only, 32-bit counter that increments once every System Clock cycle. Cogs read

 Figure 1-10 Propeller Main RAM/ROM.

 Figure 1-11 Propeller Cog RAM.

MULTICORE PROPELLER MICROCONTROLLER 13

14 THE PROPELLER CHIP MULTICORE MICROCONTROLLER

the System Counter via their CNT register to perform timing calculations and accurate
delays. The System Counter is not a mutually exclusive resource; every cog can read
it simultaneously.

Information: We use the System Counter in nearly every exercise in the next
chapter.

Counter Modules and Video Generators These are some of the Propeller’s secret
weapons. Each cog contains two counter modules and one video generator. They are simple
state-machines that perform operations in parallel with the cogs that contain them.

Using its video generator, a cog can display graphics and text on a TV or computer
monitor display. Using its counter modules, possibly in concert with software objects, a
cog can perform functions that might require dedicated hardware in other systems, such
as measuring pulses, frequency, duty cycle, or signal decay, or performing delta-sigma
A/D and duty-modulated D/A conversion.

Information: We put these powerful state-machines to good use in later
chapters.

Summary
We learned what multicore is about and why it’s important. We also explored our
multicore hardware in preparation for the journey ahead. The next chapter will apply
this hardware a step at a time while teaching simple problem-solving and multicore
programming techniques.

Exercises
To further your learning experience, we recommend trying the following exercises on
your own:

1 Carefully consider opportunities for multicore devices. How could a self-propelled
robot be enhanced using multicore? What if it had multiple legs and arms?

2 Think about ways humans exhibit multicore traits. Yes, we have only one “mind,”
but what keeps our heart beating and our lungs pumping while we are busy think-
ing about this? What about “learned” refl exes? Keep this in mind when applying
multicore hardware to future applications.

15

2
INTRODUCTION TO PROPELLER

PROGRAMMING

Jeff Martin

Introduction
The most reliable systems are built using simple, proven concepts and elemental rules as
building blocks. In truth, those basic principles are valuable for solving many everyday
problems, leading to solid and dependable results. Together, we’ll apply those principles
in step-by-step fashion as we learn to program the multicore Propeller in the following
exercises.

You’ll be running a Propeller application in no time, and writing your own in mere
minutes! You’ll learn that you can achieve quick results, perform time-sensitive tasks,
and use objects and multiple processors to build amazing projects in little time! In addi-
tion, you’ll know where to fi nd an ever-growing collection of documentation, examples,
and free, open-source objects that an entire community of developers is eager to share
with you!

In this chapter, we’ll do the following:

■ Cover the available forms of the Propeller
■ Install the development software and connect our Propeller
■ Explore the Spin language with simple, single-core examples
■ Run our examples on a Propeller in RAM and EEPROM
■ Create a simple multicore example
■ Make a building block object
■ Adjust timing and stack size
■ Find out where to learn more

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_02.

16 INTRODUCTION TO PROPELLER PROGRAMMING

What’s the Secret?
How can you build incredible, multicore systems without getting lost in the details?
Surprisingly, there’s no real secret. In fact, teachers have been drilling the solution into
our heads for years.

Solution: Break big problems into smaller, simpler ones and solve them
individually. Then put the individual solutions together to tackle the original
problem (see Fig. 2-1).

That’s it! For applications dealing with many things at once, often a separate, focused
process (core) can address each task individually, and the collective of separate processes
can achieve amazing things with little work on the developer’s part. It’s easier than you
may think. If you start every application with this in mind, you’ll be most successful.

Let’s test this out with an example. Suppose you have an assembly line that produces
thousands of products per minute. The machinery to do it is expensive, so both quantity
and quality must be high to keep the business profi table. You need a system that inspects
the product at various critical stages, discarding the bad, keeping the good, and adjusting
the speed of assembly along the way to maximize throughput. The workers and managers
can’t be left out of the loop; they need reports of some kind and the ability to adjust
settings as the need arises. And, most importantly, each of these things should behave
consistently without any bottlenecks introduced by the activities of another.

 Figure 2-1 Big problem solved a piece at a time.

This may sound horribly complex, but breaking it down into separate problems eases
the pain:

■ First, concentrate on a system that only inspects the product and gives a pass or fail
response to each one.

■ Then, devise a process for discarding units deemed bad while keeping the good.
■ Build a component whose sole task is to adjust assembly line speed based on a ratio

of good versus bad product produced.
■ Create a system to display production status.
■ Finally, build a feature that takes human input to change operating parameters.

The task is much easier now. Solve each of these fi ve smaller problems, one at a time,
with little or no regard for the others. Each can be a specialized process that focuses
most of its energy on the given task.

A multicore device like the Propeller can then perform all of these specialized func-
tions in separate processors, each faithfully fulfi lling its “simple” duty despite the com-
plexities and timing requirements of the other functions running concurrently. The fi nal
system, completely controlled by a single Propeller chip, may use a camera for visual
product inspection, solenoids to kick bad units off the assembly line, actuators to adjust
the speed, one or more Video Graphics Array (VGA) displays to show system status,
and one or more keyboards for user input. All equipment is standard, inexpensive, and
readily available.

Ready to Dive In?
As you follow this chapter’s exercises, keep in mind that every function we have the
Propeller perform for us is just an “example process.” We will use simple example
processes, like blinking light-emitting diodes (LEDs), to demonstrate an application
while focusing on the concepts of Propeller programming.

In place of each example, we could use audio, video, analog-to-digital, or any number
of other possible processes, but they would obscure the point. The point is that the
concepts in this short chapter serve as building blocks for many types of “processes,”
from simple to sophisticated, from single-core to multicore.

The rest of this book will show you fantastic examples of those capabilities, taking
full advantage of what the multicore Propeller has to offer. The foundation we build in
this chapter will provide you with a strong understanding of the things to come.

Let’s Get Connected!
Let’s get started by connecting the Propeller and testing it out! You can get a Propeller
chip in many different forms to suit your needs (see Fig. 2-2).

LET’S GET CONNECTED! 17

18 INTRODUCTION TO PROPELLER PROGRAMMING

Tip: Check out www.parallax.com/propeller for current product offerings.

For demonstration purposes and ease-of-use, we’ll focus on the Propeller Demo
Board in this chapter’s exercises. Don’t worry—the other products can also perform the
same, simple examples we show here with the addition of some simple circuitry.

SOFTWARE: PROPELLER TOOL—INSTALL THIS FIRST

Now that we’ve selected a Propeller product, to develop applications for it, we fi rst
need to install the Propeller Tool software and connect the Propeller to a computer and
power supply.

✓ Download and install the Propeller Tool software.
 The Propeller Tool software is available free from Parallax Inc. Go to www.

parallax.com/Propeller and select the Downloads link.
 Install with the default options. The software will automatically load the Windows

Universal Serial Bus (USB) drivers needed for the next steps.
✓ Start the Propeller Tool software.

 When installation is complete, start the software by double-clicking the Propeller
Tool icon on your desktop, or follow the Start → Programs → Parallax Inc. menu
item. A window should appear similar to Fig. 2-3.

Need instant gratification?

The Propeller Demo Board is for you.

Want to wire it yourself?

Use a DIP package or PropStick USB.

Building a permanent
application?

Fabricate custom boards
with LQFP or QFN packages,
or try the Proto Boards.

 Figure 2-2 Propeller chip in different forms.

www.parallax.com/propeller
www.parallax.com/Propeller
www.parallax.com/Propeller

Tip: In addition to being a code editor, the Propeller Tool is a launch point for a
wealth of Propeller information. The Help menu includes not only Propeller Help,
but the manual, datasheet, schematics, and educational labs as well.

Tip: Linux and Mac software (Fig. 2-4) is also available but may not include the
USB drivers for your system. See instructions with the software to install USB
drivers before connecting hardware.

HARDWARE: PROPELLER DEMO BOARD—CONNECT
THIS SECOND

✓ Connect a standard USB cable (A to mini B type cable).
 Insert the cable’s “A” connector into an available USB port on your computer

and the “mini B” connector to the Propeller Demo Board’s USB jack as shown
in Fig. 2-5. The computer will indicate that it found new hardware and should
automatically confi gure itself since we installed the USB drivers in the previous
step.

✓ Connect a power supply (6–9 VDC wall-pack with center-positive, 2.1-mm plug).
 Insert the power supply’s plug into the jack next to the power switch.

✓ Turn on the power.
 Slide the power switch to the ON position and verify that the power light, located

near the switch, illuminates.

Object View—shows application structure.

Folder and File views—provides
access to objects on the computer.

Edit pane—where you enter your code.

 Figure 2-3 Propeller Tool software (Windows).

LET’S GET CONNECTED! 19

20 INTRODUCTION TO PROPELLER PROGRAMMING

Edit pane—where you enter your code.

Folder and File views—provides
access to objects on the computer.

 Figure 2-4 Brad’s Spin Tool (BST) on a Macintosh.

 Figure 2-5 Propeller Demo Board connected and powered.

Now test the connection.

✓ Perform the Propeller Identifi cation process.
 Press the F7 key or select the Run → Identify Hardware. . . menu item. The

Propeller Tool will scan for the Propeller and display results similar to
Fig. 2-7.

PROP PLUG USB INTERFACE TOOL FOR CUSTOM
PROPELLER BOARDS

Many Propeller boards feature a USB interface. If you are not using the Propeller
Demo Board, see the product’s documentation for connection details.

For discrete Propeller chips, Fig. 2-6 shows the connection using the Propeller
Plug (available from www.parallax.com). Refer to the chip’s pin names if translat-
ing from the DIP to the LQFP or QFN packages.

If you don’t have a Propeller Plug or USB port, look for “Hardware Connections”
in Propeller Tool Help for an example connection to an RS-232 serial port.

 Figure 2-6 Propeller DIP to Prop Plug connections.

LET’S GET CONNECTED! 21

www.parallax.com

22 INTRODUCTION TO PROPELLER PROGRAMMING

Tip: If the software was unable to fi nd the Propeller chip, check all cable connections
and the power switch/light, then try the identifi cation process again. You may also verify
the USB connection and driver using the Serial Port Search List; select the Edit →
Preferences menu item, choose the Operation tab, click the Edit Ports button, then
connect/disconnect the USB cable while watching the Serial Port Search List window.
When working properly, your Propeller connection will appear as a “USB Serial Port.”

Your First Propeller Application
Now that we can talk to the Propeller, let’s write a short program to test it. We’ll start
our exercises slow and easy and accelerate into more advanced topics as we build up
our knowledge.

✓ Type the following code into the blank edit pane of the Propeller Tool software.
 Make sure the PUB line begins at the leftmost edge of the edit pane. Note that the

case of letters (uppercase/lowercase) does not matter but indention often does;
we indented the lines under PUB LED_On by two spaces.

PUB LED_On

 dira[16] := 1
 outa[16] := 1
 repeat

Tip: This source is from: PCMProp/Chapter_02/Source/LED_On.spin.

When done, your screen should look something like Fig. 2-8.

✓ Now compile the code by pressing the F9 key, or by selecting the Run → Compile
Current → Update Status menu item.

 If everything is correct, “Compilation Successful” should appear briefl y on the
status bar. If you entered something incorrectly, an error message will appear
indicating the problem; recheck your work and compile again.

 Figure 2-7 Identifi cation dialog showing version
and port of Propeller chip.

 Figure 2-8 Propeller Tool with LED_On application entered.

LED SCHEMATIC

If you are not using the Propeller Demo Board, add the circuit shown in Fig. 2-9
to your setup for the following exercises. Pxx labels refer to Propeller input/output
(I/O) pins, not physical pin numbers.

 Figure 2-9 Schematic for
LED exercises.

YOUR FIRST PROPELLER APPLICATION 23

24 INTRODUCTION TO PROPELLER PROGRAMMING

You just wrote your fi rst program using the Propeller’s Spin language! It’s a fully
functional program called a Propeller Application. Go ahead and try it out!

✓ Download your application to the Propeller by pressing the F10 key, or by selecting
the Run → Compile Current → Load RAM menu item.

 A message like Fig. 2-10 will appear briefl y indicating the download status.

After downloading, the LED connected to the Propeller’s I/O pin 16 should turn on. If
you check the I/O pin with a voltmeter, you’ll measure a little more than 3 volts DC.

EXPLANATION

As you may already realize, all this program does is make the Propeller set its I/O pin
16 to output a logic high (≈3.3 V). Don’t worry—we’ll do more exciting things in a
moment, but fi rst take a closer look at how the program works.

The PUB LED_On statement declares that the block of Spin code under it is a public
method named LED_On. A method is a container that holds code of a specifi c purpose,
and the name of the method indicates that purpose. Without testing it, you probably
could have guessed what our LED_On method does. The term public relates to how we
can use the method, which we’ll discuss later. A Propeller Application usually contains
multiple methods, and all executable Spin instructions must be grouped inside them to
compile and execute properly.

All instructions below the PUB LED_On declaration are indented slightly to indicate
that they are part of the LED_On method, like subitems in an outline.

Tip: PUB is only one of many block designators that provide structure to the
Spin language. There are also CON and VAR (constant and global variable
declarations), OBJ (external object references), PRI (private methods), and DAT
(data and assembly code). Look for “Block Designators” in Propeller Tool Help or
the Propeller Manual.

The dira[16] := 1 and outa[16] := 1 statements set I/O pin 16 to an output direc-
tion and a logic high state, respectively. Both dira (directions) and outa (output states)
are 32-bit variables whose individual bits control the direction (input/output) and output
state (low/high) of each of the Propeller’s corresponding 32 I/O pins.

The := “colon-equals” is an assignment operator that sets the variable on its left equal
to the value of the expression on its right. We could assign full 32-bit values to each of
these two variables; however, when working with I/O pins, it’s often more convenient
to target a specifi c bit. The number in brackets, [16], forces the assignment operator,
:=, to affect only bit 16 of dira and outa, corresponding to I/O pin 16.

 Figure 2-10 Communication dialog:
Verifying RAM.

Tip: The Propeller’s 32 I/O pins are general-purpose; each can be an input or
output and each can drive the same voltage/current levels. All of the Propeller’s
eight processors can read any pin as an input, but a processor must set a pin’s
direction to output if it wants to use it as an output. To learn more, search for “I/O
Pins” in Propeller Tool Help or the Propeller Manual.

The repeat instruction is a fl exible looping mechanism that we’ll learn more about
as we experiment. As written in this example, repeat makes the Propeller “do nothing”
endlessly.

What’s the point of that? Without repeat our program would simply end, leaving
nothing for the Propeller to do; it would terminate and reset the I/O pin to an input
direction. In other words, the LED would light up for a small fraction of a second
and then turn off forever, giving the appearance that our application did absolutely
nothing!

Most applications have an endless amount of work to do in one or more loops. For
simple tests like this one, however, we need to include a “do nothing” repeat loop in
order to see the intended result.

Challenge: Try changing the application’s numbers and downloading it again
to see the effects. What happens when you change both occurrences of [16] to
[17]? How about setting outa to 0 instead of 1?

A Blinking LED
Admittedly, our fi rst example is an expensive alternative to a simple wire and light, but
now you know a way to control the Propeller’s I/O pins!

Here’s a more exciting example using the techniques we learned, plus a little more.

✓ Create a new application with the following code.

Tip: Press Ctrl+N to start with a fresh edit pane.

PUB LED_Blink

 dira[16] := 1 'Set I/O pin 16 to output direction
 repeat 'Loop endlessly...
 outa[16] := 1 ' Set I/O pin 16 to high
 waitcnt(clkfreq + cnt) ' Delay for some time
 outa[16] := 0 ' Set I/O pin 16 to low
 waitcnt(clkfreq + cnt) ' Delay again

Tip: This source is from: PCMProp/Chapter_02/Source/LED_Blink.spin.

Caution: Indention is important here; make sure to indent the lines under
repeat by at least one space. Also, the mark (') that appears in some places is
an apostrophe character.

A BLINKING LED 25

26 INTRODUCTION TO PROPELLER PROGRAMMING

✓ Compile and download this application by pressing F10, or by using the Run →
Compile Current → Load RAM menu item.

Now the LED on I/O pin 16 should blink on and off at roughly 1-second intervals.
(see Fig. 2-11). No more is this a simple wire alternative!

EXPLANATION

Are you wondering what’s to the right of the dira[16] := 1 statement yet? That’s a
comment. Comments describe the purpose of code; they mean absolutely nothing to the
Propeller, but everything to the programmer and his or her friends. This one begins with
an apostrophe ('), meaning it’s a single-line code comment. There are other types of
comments that we’ll learn about soon, but for now, just remember that comments play
a vital role in making your code understandable.

Impress your friends! Use comments generously!
Take a look at the rest of the comments in the program, and you should clearly see

what each Spin statement does. We’ll explain what is new to us.
We’ve seen repeat before, as an endless loop that did nothing, but now it’s more

useful. This repeat is a loop that endlessly executes a series of four statements within
it. Did you notice that the statements under it are indented? That’s important! It means
they are part of the repeat loop. In fact, by default, the editor indicates that these are
part of the loop by displaying little hierarchy arrows next to them, as in Fig. 2-12.

 Figure 2-11 Demo
Board LED blinking.

Hierarchy arrows, called “block group
indicators,” automatically appear to point
out code that belongs to a group; in this
case, the last four statements are part of
an endless repeat loop.

 Figure 2-12 A close-up of the LED_Blink method as it appears in the editor.

The waitcnt command is something we haven’t seen before. It means, “Wait for
System Counter,” and serves as a powerful delay mechanism.

What do you do when you want to wait for fi ve minutes? Well, of course, you check
the current time, add fi ve minutes, then “watch the clock” until that time is reached.
The waitcnt command makes the Propeller “watch the clock” until the desired moment
is reached.

The expression within waitcnt’s parentheses is the desired moment to wait for. Both
clkfreq and cnt are built-in variables that relate to time. Think of clkfreq as “one
second” and cnt as “the current time.” So the expression clkfreq + cnt means “one
second plus the current time” or “one second in the future.”

Information: Clkfreq contains the current system clock frequency—the
number of clock cycles that occur per second. Cnt contains the current System
Counter value—a value that increments with every clock cycle. The value in cnt
doesn’t relate directly to the time of day; however, the difference between the
value in cnt now and its value later is the exact number of clock cycles that
passed during that time, which is a useful number for timing. For accurate timing,
see “Timing Is Everything.”

Challenge: Try changing the code so the LED is on for roughly one-eighth of
a second and off for one second. Hint: ‘/’ is the divide operator.

RAM versus EEPROM
If you followed the last example, you now have a happily blinking LED on your devel-
opment board. Will it continue to blink after a reset or power cycle?

✓ Try pressing the reset button or switching power off and on again.

Did the LED ever light up again? No, it didn’t, because we downloaded our applica-
tion to random access memory (RAM) only. RAM contents are lost when power fails
or a reset occurs, so when the Propeller started up again, our application was missing.

What if we want our application to start up again the next time the Propeller starts
up? We need to download to the Propeller’s external EEPROM to preserve our applica-
tion even without power.

INDENTATION IS IMPORTANT!!

The Spin language conserves precious screen space by omitting begin and end
markers on groups of code. Just as we rely on indention in outlines to show which
subtopics belong to a topic, Spin relies on indention to know what statements belong
to special control commands like repeat. You can toggle the block group indicators
on and off by pressing Ctrl+I; Spin will understand the indention either way.

RAM VERSUS EEPROM 27

28 INTRODUCTION TO PROPELLER PROGRAMMING

✓ Download your Propeller Application again, but this time by pressing the F11 key
or by selecting the Run → Compile Current → Load EEPROM menu item.

 Once again, a message will appear indicating the download status, but this time it
lasts longer as it programs the Propeller’s external EEPROM chip (see Fig. 2-13).

✓ After successful download, press the reset button or switch power off and on
again.

This time, after a short delay, your application restarts and the LED blinks again.
This will continue to happen after every reset or power cycle. When you’re ready for
your Propeller Application to “live” forever, you should download to EEPROM instead
of just to RAM.

 Figure 2-13 Communication dialog:
Programming EEPROM.

WONDERING ABOUT THAT POWER-ON/RESET DELAY?

It takes about two seconds for the Propeller to complete its bootup procedure,
including the time to load your application from EEPROM.

Don’t worry—that delay won’t increase with the size of your application!
The Propeller always loads all 32 KB from EEPROM, regardless of how many, or
how few, instructions your application contains. See “Boot Up Procedure” in the
Propeller Tool’s Help to learn more.

A More Powerful Blink
Remember how we said to focus on simple problems fi rst and tasks appropriate for
parallel processes will become apparent? Our blinking LED serves as one such example
process. Our application currently performs only one process in one specifi c way, but
it could perform this process in many different ways, either sequentially or in parallel.
Let’s enhance our method to make it easier to do this.

In this exercise, we’ll create a more fl exible version of our blinking LED method
and we’ll demonstrate it in sequential operation. In the exercise immediately following,
we’ll command multiple processes in parallel!

We mentioned earlier that a method has a name and contains instructions. What might
not have been so apparent is that a method is like an action that can be called upon by
name, causing the processor to perform its list of instructions one at a time. As it turns
out, in the last example, we could have called our LED_Blink method by simply typing
its name elsewhere in the code, like this:

PUB SomeOtherMethod

 LED_Blink 'Blink the LED

This is how methods are activated most of the time. We didn’t need to do this in our
previous examples because our applications had only one method and the Propeller
naturally calls the fi rst method in an application.

Not only can we call a method by name; we can also demand that it take on certain
attributes. Suppose that we want this LED to blink that way and for so long. It’s all
possible with the same method as long as it’s written to support those attributes.

Take a look at this new method we based on the previous example:

PUB LED_Flash(Pin, Duration, Count)
{Flash led on PIN for Duration a total of Count times.
 Duration is in 1/100th second units.}

 Duration := clkfreq / 100 * Duration 'Calculate cycle duration
 dira[16..23]~~ 'Set pins to output

 repeat Count * 2 'Loop Count * 2 times...
 !outa[Pin] ' Toggle I/O pin
 waitcnt(Duration + cnt) ' Delay for some time

Caution: Don’t run this yet! Our application isn’t ready until later in this
exercise!

EXPLANATION

Our method declaration looks different, doesn’t it?

PUB LED_Flash(Pin, Duration, Count)

Yes, we changed the name, but now there are also items in parentheses. The Pin,
Duration, and Count items are parameters we made up to accept the attribute we spoke
of earlier. Each of them is a placeholder for values (numbers or expressions) when the
method is called. Figure 2-14 shows an example of this in action.

1. SomeMethod calls
 LED_Flash with parameters.

2. The parameter values are
 “copied” into LED_Flash’s
 parameter variables.

3. LED_Flash references those
 values via their parameter
 names.

 Figure 2-14 Method call with parameters.

A MORE POWERFUL BLINK 29

30 INTRODUCTION TO PROPELLER PROGRAMMING

To the method, the parameters are local variables for its own use. It can read them
and manipulate them without affecting anything outside of itself.

In our new method, the two lines following the declaration are a different type of
comment; a multiline comment. Multiline comments begin with an open brace ({) and
end with a close brace (}) and can span more than one line of code.

The Duration := clkfreq / 100 * Duration statement means, “Make dura-
tion equal to clkfreq divided by 100 and multiplied by Duration’s original value.”
Remember, clkfreq is like “one second,” so dividing it by 100 is “1/100th of a second,”
and multiplying that by Duration gives us a multiple of 100ths of a second. Note the
comment above the line.

The dira[16..23]~~ statement is a twist on an old theme. Recall that dira controls
I/O pin directions and the number in brackets is the bit, or I/O pin, to affect. This state-
ment is a clever way to affect all the bits from 16 to 23 at once. So what do they get set
to? The trailing ~~ operator, when used this way, is a set assignment operator; it sets
the bit(s) of the variable to which it is attached to high (1). It’s shorthand, and without
it we’d have to say: dira[16..23] := %11111111.

Note: We’re setting all eight of these pins to outputs only because the Propeller
Demo Board shares them with the VGA circuit, which causes certain LED pairs to
light simultaneously when only one is actually activated. This would not happen if
they were wired as in Fig. 2-9.

Did you notice that our repeat loop has changed? It now says repeat Count * 2.
Previously, repeat was always an infi nite loop, but now it is a fi nite loop that executes
only Count*2 times.

The contents of our loop changed as well. In the !outa[Pin] statement, the ! is a
bitwise NOT assignment operator; it toggles the bit(s) of the variable to which it is
attached. It makes the I/O pin’s output state toggle to the opposite state: high if it was
low, low if it was high. It’s shorthand for outa[Pin] := NOT outa[Pin].

Tip: You can learn more about these and many other operators by searching for
“Spin Operators” in Propeller Tool Help or the Propeller Manual.

So now our LED_Flash method takes three parameters (Pin, Duration, and Count),
calculates the actual duration in clock cycles (in 100ths of a second units), sets the
pin directions, and loops Count*2 times, toggling Pin each time for the calculated
duration.

But it really won’t do anything for us if we don’t call it properly!
Let’s add another method to the top of our application so it appears as follows:

PUB Main

 LED_Flash(16, 30, 5) 'Flash led
 LED_Flash(19, 15, 15) 'Then another
 LED_Flash(23, 7, 26) 'And finally a third

PUB LED_Flash(Pin, Duration, Count)
{Flash led on PIN for Duration a total of Count times.
 Duration is in 1/100th second units.}

 Duration := clkfreq / 100 * Duration 'Calculate cycle duration
 dira[16..23]~~ 'Set pins to output

 repeat Count * 2 'Loop Count * 2 times...
 !outa[Pin] ' Toggle I/O pin
 waitcnt(Duration + cnt) ' Delay for some time

Tip: This source is from: PCMProp/Chapter_02/Source/LED_Flash.spin.

Now our application has two methods: Main and LED_Flash. Logically, our Main
method is now our application’s “director,” giving commands to guide the nature of
our application. The LED_Flash method is now a support method, obeying the Main
method’s commands.

Information: What makes Main so special? It’s not its name—it’s the position
it holds. Main is special only because it’s the fi rst method in our application, the
one the Propeller activates automatically when the application is started.

Main calls LED_Flash a number of times, each with different values for the param-
eters. What do you think is going to happen? Try it out and see!

✓ Download this application to the Propeller.

As you may have predicted, our application blinks pin 16’s LED 5 times slowly,
then pin 19’s LED 15 times more quickly, and fi nally pin 23’s LED 26 times very fast
(see Fig. 2-15).

 Figure 2-15 Demo Board LEDs blinking in sequence.

A MORE POWERFUL BLINK 31

32 INTRODUCTION TO PROPELLER PROGRAMMING

Specifi cally, when the application starts, the Propeller calls its fi rst method, Main.
The fi rst line of Main is a call to LED_Flash, so the Propeller executes each state-
ment in LED_Flash. When the fi nite loop fi nishes, there’s no more code to execute in
LED_Flash, so the Propeller “returns” to Main and executes the second line—another
call to LED_Flash. This continues until it has executed all the statements of Main in
sequence. Then, since there are no more statements in Main, it “returns.” But to where?
The Propeller called Main itself, so the “return” from Main causes the processor to
terminate.

All Together Now
Now suppose the last application isn’t quite what we needed. What if we need each
blinking process to happen at the same time (in parallel) instead of one at a time (in
sequence)?

On a single-core device, this request would be a nightmare because the timing of
each individual process, as tested earlier, would negatively affect the timing of every
process as a group. But on a multicore device like the Propeller, this is relatively easy!
With minor changes to our code, we’ll launch each instance of LED_Flash into a separate
cog (processor) to execute in parallel.

Information: What’s a cog? It’s the Propeller’s name for each of its
processors. They are called cogs since they are simple and uniform, like the cogs
on gears that mesh with others of their kind to induce change. Their simplicity
assures reliability, and as a collective, they deliver powerful results.

Here’s the updated code. Try it out now! We’ll explain it in a moment.

VAR

 long StackA[32] 'Stack workspace for cogs
 long StackB[32]
 long StackC[32]

PUB Main

 cognew(LED_Flash(16, 30, 5), @StackA) 'Launch cog to flash led
 cognew(LED_Flash(19, 15, 15), @StackB) 'And another for different led
 cognew(LED_Flash(23, 7, 26), @StackC) 'And a third, all at same time

PUB LED_Flash(Pin, Duration, Count)
{Flash led on PIN for Duration a total of Count times.
 Duration is in 1/100th second units.}

 Duration := clkfreq / 100 * Duration 'Calculate cycle duration
 dira[16..23]~~ 'Set pins to output

 repeat Count * 2 'Loop Count * 2 times...
 !outa[Pin] ' Toggle I/O pin
 waitcnt(Duration + cnt) ' Delay for some time

Tip: This source is from: PCMProp/Chapter_02/Source/LED_MultiFlash.spin.

✓ Download this application to the Propeller and note how it behaves differently from
the last exercise.

Now all three LEDs blink simultaneously, at different rates and different counts, but
each exactly the way they did before (see Fig. 2-16). There is no difference in each
individual LED’s behavior!

This is the beauty of a multicore device like the Propeller! You can focus your time on
a simple implementation of a process with no regard to other parts of a fi nal application
and then simply connect the individual parts together in the end. And this can be done
with many different types of processes, not just multiple instances of the same process.

EXPLANATION

Our application code didn’t change much. In fact, the LED_Flash method didn’t change
at all.

First we added a new block at the top of the code—a VAR block—which declares a
block of global variables. The statement long StackA[32] reserves 32 longs (128 bytes)
of memory and calls it StackA. The declarations for StackB and StackC are similar. As
the comment indicates, this memory is for cog workspace.

Information: When a cog executes Spin code, it needs stack space—that
is, temporary workspace to process method calls and expressions. The Spin
compiler automatically assigns the fi rst cog’s workspace (for the main application
code), but additional cogs launched on Spin code need manually assigned
workspace. Thirty-two longs is more than enough for this example. We show how
to determine how much is enough later in “Sizing the Stack.”

 Figure 2-16 Demo Board
LEDs blinking in parallel.

ALL TOGETHER NOW 33

34 INTRODUCTION TO PROPELLER PROGRAMMING

Our Main method changed the way we call the LED_Flash method. Now each of our
calls is the fi rst parameter of cognew commands; as shown in Fig. 2-17. Cognew, as the
name implies, starts a new cog to run the method indicated by its fi rst parameter.

When the statement cognew(LED_Flash(16, 30, 5), @StackA) is executed, a new
cog starts up to run the LED_Flash method (with the parameters 16, 30, and 5). The
second parameter of cognew, @StackA, directs the new cog to its assigned workspace.
The @ operator returns the address of the variable it’s attached to, so the new cog locates
its workspace in the memory starting at the address of StackA.

As Main executes, it starts three other cogs, each running LED_Flash with different
parameters and using different workspaces; then Main runs out of code, causing the fi rst
cog (the application cog) to terminate. As each of the remaining cogs fi nish executing
their instance of LED_Flash, they individually terminate, leaving absolutely no cogs
running and no LEDs fl ashing.

Wrapping It Up
So far we’ve created a nice method to perform our desired task: fl ashing an LED. It’s
been enhanced, tested in isolation, and even integration-tested as parallel processes. You
didn’t know it, but all this time we’ve been building towards this moment: the creation
of a building block object.

An object is a set of code and data that is self-contained and has a specifi c purpose.
Though we called our examples “Propeller Applications,” that’s only half the story. A
Propeller Application is an executable image made from an object, which itself may
be made up of one or more other objects. We’ve actually been designing an object all
along. Now we want to transform it into a building block object.

Building block objects are meant to be subcomponents of other objects; they have
a set of required inputs and deterministic outputs. Propeller users love building block
objects because they can swiftly combine them into one object, or application, that
performs with all the expert skills of the collective of objects. Figure 2-18 shows an
analogy for this concept.

 Take a look at the following code; we rewrote the top portions of our last exercise,
but our core, the LED_Flash method, is only slightly different. Can you see how?

✓ Enter and save this code. Give it the name “Flash.spin.”

Calls to LED_Flash, in
previous exercise, are now
the first parameter of
cognew, which starts a new
cog to run them in parallel.

 Figure 2-17 Method call with parameters.

VAR
 long Cog 'Holds ID of started cog
 long Stack[32] 'Stack workspace for cog

PUB Start(Pin, Duration, Count)
{{Start flashing led on Pin, for Duration, a total of Count times.}}

 Stop
 Cog := cognew(LED_Flash(Pin, Duration, Count), @Stack) + 1

PUB Stop
{{Stop flashing led.}}

 if Cog 'Did we start a cog?
 cogstop(Cog~ - 1) ' If so, stop it

PRI LED_Flash(Pin, Duration, Count)
{Flash led on PIN for Duration a total of Count times.
 Duration is in 1/100th second units.}

 Duration := clkfreq / 100 * Duration 'Calculate cycle duration
 dira[16..23]~~ 'Set pins to output

A builder chooses from
many premade objects to
construct a bike in very
little time.

Can you imagine having to
create every object yourself?
Utilizing a set of high-quality
objects saves you an
immense amount of time.

 Figure 2-18 Building block objects used in a bike application.

WRAPPING IT UP 35

36 INTRODUCTION TO PROPELLER PROGRAMMING

 repeat Count * 2 'Loop Count * 2 times...
 !outa[Pin] ' Toggle I/O pin
 waitcnt(Duration + cnt) ' Delay for some time

Tip: This source is from: PCMProp/Chapter_02/Source/Flash.spin.

Caution: Don’t run this yet! Our application isn’t ready until later in this exercise.

EXPLANATION

The only change we made to LED_Flash is to declare it as PRI instead of PUB. Do you
recall how PUB declares a “public” method? PRI declares a private method. The differ-
ence is that while public methods can be called by other objects, private methods cannot.
This feature helps an object maintain its integrity. Generally, most object methods
are declared as public since they are meant to be called by other objects at any time.
Methods not designed for random calling from other objects should be declared as
private, especially those that threaten the object’s integrity if misused.

Since LED_Flash is our core method, we’re making it private just as a matter of
principle. We’re making this object automatically handle cog launching, memory man-
agement, and LED blinking with one simple interface, so there’s no need for outside
objects to call LED_Flash directly.

In the VAR block we declared a variable, Cog, to hold the ID of the cog this object
will launch. We’ll use this to stop that cog later, if necessary. We also declared a single
Stack variable of 32 longs, the same size as before.

We replaced our Main method from the previous example with two new methods:
Start and Stop. The Start method launches a cog to fl ash our LED. The Stop method
stops the cog launched by Start, if any.

Information: By convention, whenever you create an object that launches
another cog, you should have methods named “Start” and “Stop” that manage
the cog. This provides a standard interface that gives users of your object a clear
indication of its intention.

Our Start method includes the same parameters as our LED_Flash method. Other
objects will call our Start method to launch another cog to fl ash an LED with the given
parameters.

Ironically, it seems, the fi rst thing Start does is call Stop. This is because we want
each instance of our object to maintain only one cog at a time. We don’t want users
calling our object’s Start method multiple times and running out of cogs.

The next line, Cog := cognew(LED_Flash(Pin, Duration, Count), @Stack) + 1,
is a combined expression and cognew instruction. If you look carefully, you’ll see that
the cognew instruction launches our LED_Flash method with the parameters originally
given to Start and assigns it some workspace, @Stack. But why do we set the Cog variable
equal to cognew() + 1? As it turns out, cognew returns a value equal to the ID (0 to 7) of
the cog it actually started, or −1 if none were started. We’ll use this to keep track of the
cog we launched so we can stop it later, if desired. We add 1 to the ID to make the code
in Stop more convenient, as you’ll see in a moment.

In Stop, we check if a cog was started by us and, if so, we stop it. The if is a deci-
sion command. If its condition—Cog in this case—is “true,” it executes the block of
code within it: the indented cogstop command. The condition if statements evaluate
can range from simple to elaborate expressions, but the result is always the same: it’s
either true or false. In this case, our decision is simple; it means, “If the value in the
Cog variable is not zero, execute a cogstop statement.” Remember that Cog was set to
cognew() + 1, giving us a value of 0 (if no cog was started) or a value of 1 through 8
if a cog was started.

Our cogstop(Cog~ - 1) command, if executed, stops the cog whose ID is the value
Cog - 1, and then post-clears (~) the Cog variable to zero. We clear it so an additional
call to Stop does nothing.

Tip: You can fi nd out more about the commands cognew, cogstop, and if, and
the post-clear operator (~) in the Propeller Tool Help or Propeller Manual.

You may have noticed the fi rst comment in Start and Stop begins with two brackets:
{{. This is not a mistake; it’s yet another type of comment—a document comment. Use it
for embedding documentation right inside the object that can be seen using the Propeller
Tool’s Documentation view (see Fig. 2-19).

USING OUR BUILDING BLOCK OBJECT

Now that our Flash object is ready, others can use it by including its name in an OBJ
block, like this one:

OBJ

 LED : "Flash" 'Include Flash object

Select Documentation
view to see an object’s
compiled documentation.

The Start method’s doc
comments show up here.

 Figure 2-19 Documentation view.

WRAPPING IT UP 37

38 INTRODUCTION TO PROPELLER PROGRAMMING

This includes our Flash object that we saved in the previous steps and gives it
the nickname “LED.” Now we can refer to methods within the Flash object using
nickname.methodname syntax, like this:

LED.Start(16, 30, 5) 'Blink LED 16 five times slowly

This statement calls LED’s Start method. That method, in our Flash object, launches
another cog to run the private LED_Flash method using the parameters given: 16, 30, and 5.

Remember the recent exercise where we launched our LED_Flash method on three
separate LEDs at the same time? Now that we’ve neatly wrapped the critical code in
our Flash object, other objects can achieve the same glory quite easily. Check out the
following code.

✓ In a new edit pane, enter and save this code. Store it in the same folder as “Flash.
spin” and name it “LEDs.spin.”

OBJ

 LED[3] : "Flash" 'Include Flash object

PUB Main

 LED[0].Start(16, 30, 5) 'Blink LED 16 five times slowly
 LED[1].Start(19, 15, 15) 'Blink LED 19 fifteen times faster
 LED[2].Start(23, 7, 26) 'Blink LED 23 twenty-six times fastest

Tip: This source is from: PCMProp/Chapter_02/Source/LEDs.spin.

✓ Download this application to the Propeller.

As this example shows, since our Flash object does the major work, our new
application-level object is clean and simple, but can blink three LEDs at different rates
simultaneously.

Tip: The LED[3] statement in the OBJ block declared an array of three Flash
objects. Each one uses the same code but its own variable space. After compiling,
you can explore the structure of your multiobject application in the Object View
(upper-left pane of the Propeller Tool). Search for “Object View” in Propeller Tool
Help to learn more.

Timing Is Everything
How fast has our Propeller been running all this time? We have a 5-MHz crystal con-
nected (see Fig. 2-20), so it’s reasonable to think it’s running at 5 MHz, right?

That is reasonable, but incorrect. The Propeller has some incredibly powerful clock-
ing features, but as it turns out, none of our examples has set the clock mode. All this
time our Propeller has been using its internal 12-MHz clock, leaving the external
5-MHz crystal dormant.

Some applications will never need an external crystal because the internal clock is
just fi ne. For most applications, however, the internal clock is excessively inaccurate.

Information: The internal clock runs ideally at either 20 kHz or 12 MHz, but
its frequency can vary by as much as ±66% from the ideal.

Since we’ve been using the internal 12-MHz clock, our waitcnt delays have not been
very accurate; clkfreq contains the ideal frequency, not the actual frequency in this case.

To achieve much higher clock accuracy we need to use an external crystal. To make
the Propeller use the external 5-MHz crystal in our circuit, our application needs to set
some built-in constants.

CON
 _clkmode = xtal1 + pll16x 'Use low crystal gain, wind up 16x
 _xinfreq = 5_000_000 'External 5 MHz crystal on XI & XO

This is a CON block with the typical clock confi guration. The _clkmode constant is
set for low crystal gain (xtal1) and a phase-locked loop (PLL) wind-up of 16 times.
The _xinfreq tells the Propeller that the external crystal is providing it a 5-MHz clock
signal. The combination of _clkmode and _xinfreq means we have an accurate 5-MHz
clock multiplied by 16 (with the Propeller’s internal PLL) for a total speed of 80 MHz.
That’s an amazing speed from such an inexpensive crystal.

5-MHz crystal

 Figure 2-20 Propeller, EEPROM, and crystal circuit on
Propeller Demo Board.

TIMING IS EVERYTHING 39

40 INTRODUCTION TO PROPELLER PROGRAMMING

Applying this to the previous examples may not appear to make a change, but if you
looked at the difference on an oscilloscope it would be clear.

Tip: The clock mode constants can only be set in the application-level object.
Clock mode constants in building block objects are ignored at compile time.

SYNCHRONIZED DELAYS

Despite the clock settings noted previously, the timing of events will still be slightly off
unless we use waitcnt in a specifi c way. So far, our loops have performed an operation
and then waited for an interval of time. Since that interval was our “ideal” delay time, it
didn’t account for the overhead of the rest of the instructions in the loop. The real delay
between any two occurrences of our looped event is the time it took to start the loop
iteration, plus the time to perform the event, plus our “idealized” loop delay.

For our application, timing accuracy isn’t vital, but for many applications, accurate
timing is a must. For example, code like the following causes a cumulative error in the
moment the I/O pin toggles compared with the ideal moment in time, as seen in Fig. 2-21.
Note that the Count, Duration, and Pin symbols are long variables.

 dira[Pin]~~ 'Set Pin to output
 repeat Count * 2 'Loop Count * 2 times...
 !outa[Pin] ' Toggle I/O pin
 waitcnt(Duration + cnt) ' Delay for some time

Tip: This source is from: PCMProp/Chapter_02/Source/Out_Of_Synch.spin.

In contrast, with just a slight rewrite of the code, it uses a single moment in time
(Time 0 in Fig. 2-22) as an absolute reference for all future moments and perfectly
synchronizes the I/O pin events to those moments. Note that the Count, Duration, Pin,
and Time symbols are long variables.

 dira[Pin]~~ 'Set Pin to output
 Time := cnt 'Determine reference moment
 repeat Count * 2 'Loop Count * 2 times...
 waitcnt(Time += Duration) ' Delay for some time
 !outa[Pin] ' Toggle I/O pin

 Figure 2-21 I/O pin events out of synch with ideal duration.

Just before the loop, Time is set to the current System Counter value. Inside the loop,
we fi rst wait for the moment indicated by Time + Duration, then perform the I/O event.
The Time += Duration expression calculates that next moment and adjusts Time to that
moment in preparation for the next loop iteration.

This technique works for any loop as long as Duration is greater than the longest
possible loop overhead.

Tip: You will fi nd an in-depth look at tackling timing-related bugs in Chapter 3.
You can also fi nd out more by looking up “Synchronized Delays” in Propeller Tool
Help or the Propeller Manual.

Sizing the Stack
In “All Together Now,” we mentioned the need for stack space when launching Spin
code into another cog. Now we’ll discuss how to size it.

The stack used by a cog running Spin code is temporary workspace. Within the stack,
the amount of memory actually used changes with time. It grows while evaluating
expressions and calling nested methods, and shrinks when returning expression results
and returning from methods.

While developing objects, it is best to size the stack reserved for new cogs larger
than necessary to avoid the strange results that can plague a program whose stack is too
small. Until you get experienced with sizing the stack, we recommend reserving 128
longs initially and optimizing it later.

Why should you optimize, and when is the best time to do it? You should optimize
the size of stack space so your object does not waste precious memory for all the
applications that use it. Only when you’re absolutely done with your object should you
consider optimizing stack space; doing so beforehand could be disastrous as you make
fi nal tweaks to your code.

To determine the optimal stack size needed for your object, we recommend using the
Stack Length object that comes with the Propeller Tool.

 Figure 2-22 I/O pin events synchronized with ideal duration.

SIZING THE STACK 41

Tip: This source is from: PCMProp/Chapter_02/Source/In_Synch.spin.

42 INTRODUCTION TO PROPELLER PROGRAMMING

Tip: Many objects come with the Propeller Tool software. To fi nd demonstration
code for them, choose Propeller Library—Demos from the drop-down list above
the Folder View. To fi nd the actual building block objects, choose Propeller Library
instead.

✓ Load the Stack Length Demo object (see the previous Tip) and read its comments.
 If you want to learn even more, load the Stack Length object itself and read its

top comments and its “Theory of Operation” section.

We’ll use the Stack Length Demo object as a template for our test. As it suggests,
we copy and paste its “temporary code” above the existing code in our Flash object,
as shown here:

'-------- Temporary Stack Length Demo Code --------
CON
 _clkmode = xtal1 + pll16x 'Use crystal*16 for fast serial
 _xinfreq = 5_000_000 'External 5 MHz crystal XI & XO

OBJ
 Stk : "Stack Length" 'Include Stack Length Object

PUB TestStack
 Stk.Init(@Stack, 32) 'Init reserved Stack space
 Start(16, 30, 5) 'Exercise object under test
 waitcnt(clkfreq * 2 + cnt) 'Wait ample time for max stack usage
 Stk.GetLength(30, 115200) 'Send results at 115,200 baud

'-------- Flash object code --------
VAR
 long Cog 'Holds ID of started cog
 long Stack[32] 'Stack workspace for cog

PUB Start(Pin, Duration, Count)
{{Start flashing led on Pin, for Duration, a total of Count times.}}

 Stop
 Cog := cognew(LED_Flash(Pin, Duration, Count), @Stack) + 1

PUB Stop
{{Stop flashing led.}}

 if Cog 'Did we start a cog?
 cogstop(Cog~ - 1) ' If so, stop it

PRI LED_Flash(Pin, Duration, Count)
{Flash led on PIN for Duration a total of Count times.
 Duration is in 1/100th second units.}

 Duration := clkfreq / 100 * Duration 'Calculate cycle duration
 dira[16..23]~~ 'Set pins to output

 repeat Count * 2 'Loop Count * 2 times...
 !outa[Pin] ' Toggle I/O pin
 waitcnt(Duration + cnt) ' Delay for some time

Tip: This source is from: PCMProp/Chapter_02/Source/Flash_Stack_Test.spin.

Note that we carefully checked and modifi ed the code in the temporary TestStack
method so that:

1. “Stack,” in the Stk.Init statement, is the actual name of our reserved stack space
for the LED_Flash method.

2. “32,” in the Stk.Init statement, is the actual number of longs we reserved for
LED_Flash’s stack space.

3. The Start statement contains valid parameters to our Flash object’s Start method.
4. The waitcnt statement waits long enough for our LED_Flash method to be fully

exercised (at least one iteration of its repeat loop).

RUNNING THE STACK TEST

Now it’s time to run the test. The Stack Length object outputs its result serially on the
Propeller’s programming port. To receive the information, you need a simple terminal
application. As it so happens, the Propeller Tool installer includes one called Parallax
Serial Terminal.

✓ Start the Parallax Serial Terminal software.
 An icon for it may have been placed on your desktop during installation, or you

may fi nd it in your computer’s Start → All Programs → Parallax Inc → Propeller
Tool . . . path.

 A window should appear similar to Fig. 2-23.
✓ Select your Propeller’s programming port from the Parallax Serial Terminal’s Com

Port fi eld.
✓ Select 115200 from the Baud Rate fi eld.
✓ Arrange the Parallax Serial Terminal and Propeller Tool windows so you can get to

each one quickly with the mouse.
✓ Select the Propeller Tool software.

When you selected the Propeller Tool software, did you notice something happened
with the Parallax Serial Terminal? The title bar (top of window) and the lower-right

SIZING THE STACK 43

44 INTRODUCTION TO PROPELLER PROGRAMMING

button (control panel) change to let you know the Parallax Serial Terminal has closed the
serial port (see Fig. 2-24). This is important because it lets the Propeller Tool software
open the port to download our application.

✓ Start the download of our modifi ed Flash object and, during the download, click the
Enable button of the Parallax Serial Terminal.

Transmit pane—type
text here to transmit to
the Propeller.

Receive pane—text
from the Propeller
appears here.

Control panel—set port,
baud rate, and other
communication
attributes here.

 Figure 2-23 Parallax Serial Terminal: default display.

Click this button to enable the terminal;
this opens the serial port.

 Figure 2-24 Control panel of Parallax Serial Terminal: waiting
for enable.

After our modifi ed Flash object is downloaded, the Parallax Serial Terminal will
open the serial port and wait for input. The pin 16 LED will fl ash, as expected, and a
message will soon appear in the receive pane (see Fig. 2-25).

Now we know we only need to reserve 9 longs of space for the LED_Flash meth-
od’s stack. We can adjust the stack size, remove the temporary code, and publish our
object.

VAR
 long Cog 'Holds ID of started cog
 long Stack[9] 'Stack workspace for cog
 .
 .
 .

Propeller Objects and Resources
We encourage you to learn more about the Propeller. Besides reading the rest of this book
and exploring outside resources we’ve shown you, study other developers’ objects. Dozens
are included with the Propeller Tool software, and hundreds more are in a central location
called the Propeller Object Exchange—obex.parallax.com (see Fig. 2-26).

There’s an active user forum full of Propeller users with ideas, questions,
answers, and genuine motivation to share (see Fig. 2-27). Visit the Parallax Forums

The stack test shows the resulting
utilization; 9 longs.

 Figure 2-25 Stack utilization message from Propeller.

PROPELLER OBJECTS AND RESOURCES 45

46 INTRODUCTION TO PROPELLER PROGRAMMING

The Propeller Object Exchange is
where developers go to share their
objects with others. It’s free! You can
quickly download, try out, experiment
with, and learn from other Propeller
objects.

Objects are organized by category for
easy locating. Drill down through
lists for more detail including user
ratings and reviews.

 Figure 2-26 Propeller Object Exchange (obex.parallax.com).

The Propeller Forum is full of great ideas, enthusiastic supporters, and endless opportunities to learn.

 Figure 2-27 Parallax Propeller Forum.

at forums.parallax.com. The top threads contain links to many valuable Propeller
resources.

More tips and examples can be found by joining a Propeller Webinar (a live web-
based meeting) or viewing archived webinars at www.parallax.com/go/webinar (see
Fig. 2-28). This is a way to connect to Parallax staff and get an inside look at how to
use the multicore Propeller.

PROPELLER OBJECTS AND RESOURCES 47

www.parallax.com/go/webinar

48 INTRODUCTION TO PROPELLER PROGRAMMING

Summary
Together we built our own object that evolved into a building block other developers
could use. Along the way, we learned about methods, I/O, loops, decisions, timing, and
single-core versus multicore processing. The next chapter will build up your object
debugging skills, and then you’ll have the foundation you need to dive into the many
fascinating projects that fi ll the remainder of this book.

 Figure 2-28 Propeller Webinars (www.parallax.com/go/webinar).

www.parallax.com/go/webinar

Exercises
To further your learning experience, we recommend trying the following exercises on
your own:

1 Explore the Propeller Library and Demos included with the Propeller Tool. Compile
and run as many as possible, and take the time to study the code.

2 Modify the examples we built to perform tasks of your choice. Can you make an
application that performs three or four different tasks at once?

3 Log on to the Propeller Forum and read through, and even post to, some of the recent
threads.

EXERCISES 49

This page intentionally left blank

51

3
DEBUGGING CODE FOR

MULTIPLE CORES

Andy Lindsay

The chapter title, “Debugging Code for Multiple Cores,” might sound a little like
a computer science or engineering course topic that students struggle through and
then wax poetic about how hard it was later in life. If that’s the kind of challenge
you were looking for, sorry, you won’t fi nd it here. As with application development,
debugging multicore applications with the Propeller microcontroller is typically easier
than debugging equivalent single-core, time-sliced implementations. The Propeller
microcontroller’s architecture, programming language, and object design conventions
all work together to minimize the likelihood of coding errors (aka bugs). They also help
keep any coding errors that do sneak in on the surface where they are easier to spot. In
addition, there are a number of healthy coding habits that help prevent multiprocessor
coding mistakes, as well as software packages, useful objects, and techniques you can
use to reduce the time it takes to fi nd and correct coding errors. These preventative
measures, software packages, and bug fi nding and correcting techniques are the focus
of this chapter as it introduces the following:

■ Propeller features that simplify debugging
■ Object design guidelines for preventing multiprocessing bugs
■ Common multiprocessor coding mistakes
■ Survey of Propeller debugging tools
■ Debugging tools applied to a multiprocessing problem

The most common root cause of coding errors that do make their way into Propeller
multicore applications is our natural tendency to forget that segments of the application
code get executed in parallel. Thinking in multiprocessing terms seems like it should

52 DEBUGGING CODE FOR MULTIPLE CORES

be a simple thing to remember, but especially at first, it’s all too easy to forget.
Once forgotten, obvious bugs can start to seem subtle and diffi cult to fi nd, at least
until the results of some test provides the necessary reminder. So, start your parallel
processing-think memory exercises as you go through this chapter by keeping in mind
that segments of multicore Propeller application code get executed in parallel by more
than one cog.

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_03.

Propeller Features That Simplify
Debugging
The Propeller microcontroller’s architecture, programming language, and design
conventions that object authors adhere to don’t just simplify application development—
they help prevent a myriad of coding errors that could otherwise plague application
developers.

ARCHITECTURE THAT PREVENTS BUGS

While designing the Propeller microcontroller, one of Chip Gracey’s fi rst and fore-
most goals was to distill its design so that the rules for accomplishing any task would
be simple and straightforward. Two examples where this design approach prevents a
variety of bugs are in I/O pin and memory access.

There are some multicore microcontroller designs where each processor has direct
access to only its own bank of I/O pins, so extra communication steps are necessary
for a core to interact with an I/O pin outside of its bank. In contrast, with the Propeller
chip, any cog or group of cogs can infl uence any Propeller microcontroller I/O pin or
group of I/O pins at any time. Each cog has its own output and direction registers for
all I/O pins, and to make I/O pin states follow a simple set of rules, all the cogs’ I/O pin
direction and output settings pass through the top set of OR gates shown in Fig. 3-1.
With this arrangement, if one cog sets an I/O pin register bit to output, a different cog
can still leave its I/O pin direction register bit set to input, and even monitor the state
of the I/O pin to fi nd out what signals the other cog is transmitting.

The rule for multiple cogs controlling outputs is also simple. If one or more cogs
control the same I/O pin output, a cog sending a high (binary 1 in the output register
bit) will win and the I/O pin will be set high, even if other cogs have binary 0s in the
same output register bits. This scheme makes it possible for one cog to modulate higher-
speed on/off carrier signals that another cog is transmitting. Whenever the modulating
cog sends a high signal, the carrier signal’s low signals don’t make it through. When
the modulating cog sends a low signal, the carrier’s high and low signals can make it
through. Figure 3-2 shows an example where the upper trace is the signal from two cogs

 Figure 3-1 Block diagram excerpt—shared I/O pin access.

 Figure 3-2 Signal modulation with two cogs sharing I/O pin access.

53

54 DEBUGGING CODE FOR MULTIPLE CORES

sharing an I/O pin and the lower trace is a copy of the modulator cog’s signal, which
stops the upper trace’s carrier signal whenever it’s high.

Low-level main memory access collisions are another example of a potential debugging
problem that could have been left to the programmer to prevent. Memory access collisions
can occur if two processors attempt to access the same 32-bit long in memory at the same
instant. Low-level memory access collisions are prevented in the Propeller microcontroller
by giving each cog Main RAM access in the round-robin fashion shown in Fig. 3-3.
This completely eliminates the possibility of low-level memory collisions because each
cog takes its turn accessing memory elements. This also frees the application from any
concerns about taking turns at accessing individual memory elements and immensely
simplifi es the code. In addition to 32 K bytes (8 K longs) of Main RAM, each cog has its
own 2 K bytes (512 longs) of Cog RAM. Each cog has exclusive access to its own Cog
RAM, without taking turns, which can be useful for speed-optimized processes.

Even though the Propeller chip’s architecture has eliminated the possibility of low-level
main memory access collisions, there can still be timing issues with cogs reading from
or writing to groups of memory elements during the same time period. In that case, one
cog might get half old and half new values, as the other cog is busy updating the same
group of memory elements. So, the Propeller microcontroller’s main memory has eight
semaphore bits, called locks, which simplify the task of making sure that one cog doesn’t
try to read a group of variables at the same time another cog is updating them.

Communication between cogs is another design puzzle that has a variety of solutions,
some of which could have made coding complex and bug-prone. With the Propeller
microcontroller, cogs can exchange information through the Propeller chip’s Main
RAM. Again, since each cog gets sequential access to individual memory elements,
bugs as a result of low-level memory contention are not possible, and lock bits built into

 Figure 3-3 Block diagram excerpt—round
robin main memory access.

main memory for updating groups of memory elements make this a simple, effective,
and bug free means for cogs to exchange information.

One last but not-so-obvious characteristic of the Propeller chip’s design that helps
reduce bugs is its hardware symmetry. As mentioned in Chap. 1, all cogs are physically
identical, rather than being specialized for certain functions. This allows any cog to be
as useful as any other cog for any task, so it is not necessary to assign code to a specifi c
chunk of hardware (unless desired, as the Spin language certainly provides for this).
This allows the next available cog to handle whatever task is presented, and there is no
need to determine if unexpected behavior is a result of code waiting for, or running in,
a certain type of core.

LANGUAGE AND PROGRAMMING CONVENTIONS
THAT HELP PREVENT BUGS

The Spin and Assembly languages incorporated into the free Propeller Tool software
have a number of features that help prevent multiprocessing bugs. For example, the lock
bits have a set of commands that help manage main memory. Likewise, there is a set
of cog commands to give the developer more control over the hardware, if desired. For
example, a cog can be selected and launched by number with coginit so the developer
can know exactly which process is happening where. Code can also be launched into the
next available cog with cognew, report where it landed with cogid, and a cog’s ID used
with cogstop will shut down that cog. An arrangement similar to this is incorporated
into objects available from the Propeller Object Exchange because it allows building
block objects to launch code into the next available cog without interfering with any
cogs that the application might already be using.

The object-based nature of the language was introduced in the previous chapter,
and one of the most important features of building block objects from the Propeller
Library and Propeller Object Exchange is that their authors (usually) follow con-
ventions established by Parallax to make their interfaces simple and trouble-free.
Building block objects that launch code into other cogs take care of most of the
multiprocessing grunt work. Good objects also contain methods that simplify con-
fi guring the process executed by the other cog and exchanging information with
the top-level application object.

By convention, a building block object that launches a process into another cog has a
Start method that receives confi guration information and contains code that launches
the new cog. It also has a Stop method for shutting the process down and freeing the
cog. In many cases, these objects also have methods that provide a data exchange inter-
face. In other cases, the parent object passes information about its variable addresses
so that the object can directly write to and/or read from the parent object’s variables.
Regardless of whether a method interface, a memory sharing interface, or some com-
bination of the two gets used, the building block object that manages the process keeps
the interface simple.

For example, let’s consider the Propeller Library’s Keyboard object. After its Start
method gets called, its assembly language code takes care of communication with the

PROPELLER FEATURES THAT SIMPLIFY DEBUGGING 55

56 DEBUGGING CODE FOR MULTIPLE CORES

keyboard and buffers any key presses. The application object can then call the Keyboard
object’s Key method to get the latest buffered key press (or fi nd out that there’s nothing
in the buffer) whenever it has time. Another example is the Sigma-Delta ADC object,
which is designed to provide digitized analog voltage measurements and will be dem-
onstrated in Chap. 4. This object’s Start method is designed to receive a variable’s
memory address from the application object. After the Sigma-Delta ADC object’s Start
method launches its analog-to-digital conversion code into a new cog, that cog always
copies the most recently measured voltage value into the parent object’s variable that
was set aside for receiving the measurements. In either case, the end result is a simple
and easy-to-use interface, which, in turn, tends to be bug-free because all the application
code has to concern itself with using the information it has received.

Object Design Guidelines
If you plan on designing a building block object that launches a process into another
cog, either for an application or for the Propeller Object Exchange, the Start and Stop
method conventions introduced in the previous chapter are crucial, and designing a
bug-free interface that communicates with other objects through shared memory is
equally crucial.

Figure 3-4 shows an example of one of the ways a building block object that has
launched a process (either a method or some assembly code) into another cog can
provide an information bridge between the two cogs. This fi gure shows a call to one
of its methods after the object has launched a cog as a result of a call the application
object made to the building block object’s Start method. To exchange information

Figure 3-4 Cog information exchanges with object.method calls.

with the other cog, the application object calls one of the building block object’s public
methods. Code in those public methods is executed by the same cog that is executing
the application object’s method call. Those public methods can exchange informa-
tion with the method(s) or assembly language (ASM) code executed by the other cog
through the building block object’s global variables. Propeller Library examples of
objects that use this approach include the Parallax Serial Terminal, Keyboard, and
Mouse objects.

Another common design for building block objects that manage processes in other
cogs involves a Start method with one or more parameters that receive one or more
memory addresses from the application object. The process that the building block object
launches into another cog then uses those memory addresses to update and/or moni-
tor one or more variables in the application object. Instead of object.Start(value1,
value2,...), the application object would use object.Start(@varaible1,
@variable2,...) to pass addresses of variables that the application object expects
the building block object to work with. Once the building block object knows these
addresses, it passes them to a Spin or assembly language coded process that it launches
into another cog. That process can use the memory addresses to read directly from
and/or write directly to the application object’s variables, as shown in Fig. 3-5. Code
in the application object can then exchange information with the other cog by simply
writing to or reading from those variables.

There are also other, less common variations and combinations of the two cog infor-
mation exchange arrangements just discussed. In some cases, they are used to support
a particular set of tasks the building block object is expected to perform. Regardless
of the design, the building block object’s documentation should be clear about how it
exchanges information with the application object, and the documentation should also
be clear about what its public methods do, the parameters they expect, and the values
that return. The object should also be thoroughly tested to verify that it functions as
advertised.

 Figure 3-5 Cog information exchanges through mutually
agreed-upon memory addresses.

OBJECT DESIGN GUIDELINES 57

58 DEBUGGING CODE FOR MULTIPLE CORES

Common Multiprocessor
Coding Mistakes
Thanks to the Propeller microcontroller’s architecture, programming languages, and
object design conventions, the list of common multiprocessor-related coding mistakes
is small. This section explains each potential coding mistake, its symptoms, and how
to correct it.

■ Missing call to a building block object’s Start method
■ Missing I/O pin assignments in a new cog
■ Incorrect timing interval
■ Code that missed the waitcnt boat
■ Only one cog is waiting while the other has moved on
■ Memory collisions
■ Wrong address passed to a method
■ Forgotten literal # indicator for assembly language code
■ Method in a new cog outgrows stack space

STUCK ON A BUG?

If you get stuck on a bug with test code using multiple processors, go through this
list because chances are, the bug will be one of these items. The community at
http://forums.parallax.com can also help with fi nding bugs and correcting misun-
derstandings about how a given piece of code works.

MISSING CALL TO A BUILDING BLOCK
OBJECT’S START METHOD

A building block object that executes code in more than one cog typically has a Start
method, which has to be called to launch the code that does its job into another cog. The
Test Float32.spin application object utilizes three building block objects to calculate
and display the fl oating point tangents of integer-degree values entered into the Parallax
Serial Terminal’s transmit windowpane. Two of those building block objects have Start
methods: Parallax Serial Terminal and Float32. The Parallax Serial Terminal object
has assembly code that gets launched into another cog that maintains full duplex serial
communication with the PC, and the Float32 object also has assembly code that gets
launched into another cog to optimize the speed of its fl oating point calculations. In
addition to Start and Stop methods, both of these objects have methods that take care
of exchanging information with code running in the other cogs. These methods all use
the scheme shown in Fig. 3-4, accepting parameters and passing them to the other cogs,
or returning results they got from other cogs, or both. The third building block object is

http://forums.parallax.com

FloatString. This object is a collection of useful methods for converting fl oating point
values to their string representations, but it does not use any other cogs to make these
conversions, so it does not have a Start method.

Each of these objects has documentation comments that explain how to use their
methods.

✓ Load Test Float32.spin into the Propeller Tool software.
✓ Use Run → Compile Current → View Info F8 to compile the application.
✓ Use the upper-left Object View pane to open the Parallax Serial Terminal, Float32,

and FloatString objects.
✓ Click the Documentation radio button to display each of the building block objects

in documentation view.

The Parallax Serial Terminal and Float32 objects both have Start and Stop meth-
ods listed fi rst in their Object Interface sections, which is visible in the Propeller Tool
software’s documentation view. This is your clue that each of these objects launches
code into another cog and that your application code will have to call each of their
Start methods before calling any of their other methods. If an object’s Start method
is optional, its documentation comments should state that, and if it doesn’t, a call to the
object’s Start method is probably required for the object to do its job(s).

" Test Float32.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 pst : "Parallax Serial Terminal" ' Serial communication object
 fp : "Float32" ' Floating point object
 fs : "FloatString" ' Floating point string object

PUB Go | degrees, radians, cosine

 pst.Start(115200) ' Start Parallax Serial Terminal cog
 fp.Start ' Don't forget this!!!

 pst.Str(String("Calculate tangent...", pst#NL))
 repeat
 pst.Str(String(pst#NL,"Enter degrees: "))
 degrees := pst.DecIn ' Get degrees
 ' Convert to floating point radians.
 radians := fp.Radians(fp.FFloat(degrees))
 ' Calculate tangent.

COMMON MULTIPROCESSOR CODING MISTAKES 59

60 DEBUGGING CODE FOR MULTIPLE CORES

 cosine := fp.Tan(radians)
 ' Display result.
 pst.Str(String("Tangent = "))
 pst.Str(fs.FloatToString(cosine))

Test Float32.spin works correctly since both of the Parallax Serial Terminal and
Float32 objects’ Start methods were called, and the interactive testing for fl oating
point tangent calculations is shown in Fig. 3-6. To enter numbers into the Parallax Serial
Terminal, click the Transmit windowpane before typing. The Transmit windowpane is
just above the Receive windowpane, and in Fig. 3-6, it has the number 30 entered into it,
just above the fi rst line in the Receive windowpane that reads “Calculate tangent…”

If this is your first time running the Parallax Serial Terminal, follow these
instructions:

✓ Make sure your Propeller chip’s power supply and programming cable are connected.
✓ In the Propeller Tool software, make sure Test Float32 is the active tab. In other

words, the Test Float32.spin code should be displayed in the Propeller Tool soft-
ware’s Editor pane.

✓ In the Propeller Tool software, click Run → Identify Hardware… F7 and make a
note of which COM port the Propeller is connected to. Then, in the Parallax Serial

 Figure 3-6 Calculate tangents with a fl oating point
object.

Terminal software, set the Com Port drop-down menu to the COM port number you
got from the Propeller Tool software.

✓ Set the Baud Rate drop-down to 115200 so that it matches the baud rate passed to the
Parallax Serial Terminal object’s Start method with the Test Float32.spin object’s
pst.Start(115200) method call.

When you load a program that exchanges messages with the Parallax Serial Terminal
into the Propeller chip with the Propeller Tool, make sure to click the Parallax Serial
Terminal’s Enable button as soon as the Propeller Tool software’s Communication
window reports Loading… If you wait too long to click the Parallax Serial Terminal’s
Enable button, it might have already missed the Propeller chip’s user prompt messages.
If that’s the case and you used the Propeller Tool’s Run → Compile Current → Load
RAM F10 to load the program, you will have to reload it. If you instead used Run →
Compile Current → Load EEPROM F11, you can restart the program by either pressing
and releasing the Propeller board’s Reset button or double-clicking the Parallax Serial
Terminal’s DTR check box.

✓ Make sure there is a check mark in the Parallax Serial Terminal’s Echo On check box.
This displays text you type in the Parallax Serial Terminal’s Transmit windowpane
in its Receive windowpane.

✓ In the Propeller Tool software, load the program into the Propeller chip, either with
Run → Compile Current → Load RAM F10 or with Run → Compile Current →
Load EEPROM F11.

✓ As soon as the Propeller Tool software’s Communication window reports Loading…,
click the Parallax Serial Terminal’s Enable button. Don’t wait, or you might miss the
user prompts.

The Parallax Serial Terminal’s transmit windowpane is shown in Fig. 3-6 with the
number 30 typed into it. It’s just above the “Calculate tangent…” title in the Receive
windowpane’s display.

✓ Type integer-degree angles into the Parallax Serial Terminal’s transmit windowpane,
pressing the Enter key after each one. Try 30 fi rst and verify that your results match
Fig. 3-6.

The Propeller will reply by sending the string representation of the fl oating point
result to the Parallax Serial Terminal.

Creating the “forgot to call a building block object’s Start method” bug is
easy. Just comment one or both of the Start method calls in Test Float32.spin
by placing an apostrophe to the left. Then, load the modifi ed application into the
Propeller chip. Since the application depends on the processes the two objects run
in other cogs, either one will create rather drastic bug symptoms. Commenting pst.
Start(115200) will prevent any serial messages from being exchanged between
the Propeller chip and Parallax Serial Terminal. Commenting fp.Start will cause
all the fl oating point results to be 0.

COMMON MULTIPROCESSOR CODING MISTAKES 61

62 DEBUGGING CODE FOR MULTIPLE CORES

AUTHOR’S NOTE

Forgetting to include Start method calls in application objects is my most common
coding error. In fact, when I demonstrated on the fl y fl oating point examples during
Propeller seminars and trainings, I forgot the fp.start method call on several
occasions. Each time, it took a couple of minutes to fi gure out, and it’s amazing
how time seems to slow to a standstill while trying to fi nd and fi x a bug in front
of a large group.

Even after all that, I still almost forgot to include “Missing call to a building block
object’s Start method” in my list of most common multiprocessor coding mistakes.

MISSING I/O ASSIGNMENTS IN NEW COG

As mentioned in the “Architecture that Prevents Bugs” section, each cog has its own
I/O direction and output registers. Although this solves a number of potential problems,
there is still one coding error people tend to make: confi guring the I/O from the wrong
cog. The typical form of this error is code that makes I/O pin confi gurations in one cog,
and then launches a new cog to control the I/O pins. If the new cog isn’t also confi gured
to work with those I/O pins, it won’t be able to control their output states. Furthermore,
if the cog that launched the new cog never needed to control the I/O pins, there isn’t
any reason for its code to make any I/O pin confi gurations at all. In that case, the code
that the new cog executes is the only code that needs to confi gure its I/O registers. For
example, IO Declaration Bug.spin launches a process that is supposed to make a light
blink, but the light emitting diode (LED) in Fig. 3-7 won’t blink because the I/O pin was
set to output by the cog executing the Go method. The cog executing the Blinker method
never sets its I/O pin to output, so it has no control over the I/O pin’s output state.

LIGHT AND PUSHBUTTON CIRCUITS

The light and pushbutton circuits in this section are explained in more detail in
“Propeller Education Kit Labs: Fundamentals”—4: I/O and Timing Basics Lab.
A more basic introduction to these circuits and examples of building them from
schematics is also included in early “What’s a Microcontroller?” chapters. Both
are free downloads from www.parallax.com.

 Figure 3-7 Blinking light
test circuit.

www.parallax.com

' IO Declaration Bug.spin

VAR

 long stack[10] ' Array cog executing Blinker

PUB Go

 dira[5] := 1 ' **BUG P5�output in the wrong cog
 cognew(Blinker, @stack) ' Launch a new cog to control P5
 repeat ' Optionally keep cog running

PUB Blinker

 repeat ' Infinite loop
 !outa[5] ' Invert P5 output register bit
 waitcnt(clkfreq/4 + cnt) ' Delay for 1/4 s

This problem can be corrected by moving the I/O pin direction setting to the method
that is launched into the new cog.

' IO Declaration Bug (Fixed).spin

VAR

 long stack[10] ' Array cog executing Blinker

PUB Go

 cognew(Blinker, @stack) ' Launch a new cog to control P5
 repeat ' Optionally keep cog running

PUB Blinker

 dira[5] := 1 ' P5�output in the right cog
 repeat ' Infinite loop
 !outa[5] ' Invert P5 output register bit
 waitcnt(clkfreq/4 + cnt) ' Delay for 1/4 s

As an aside, adding pin and delay parameters to the Blinker method gives the Go
method some fl exibility for setting I/O pin and delay.

' Other Cog Blinks Light.spin

VAR

 long stack[10] ' Array cog executing Blinker

COMMON MULTIPROCESSOR CODING MISTAKES 63

64 DEBUGGING CODE FOR MULTIPLE CORES

PUB Go

 cognew(Blinker(5, clkfreq/4), @stack) ' Launch new cog
 repeat ' Optionally keep this cog running

PUB Blinker(pin, delay) " Blink light method

 dira[pin] := 1 ' Set I/O pin to output
 repeat ' Repeat loop
 waitcnt(delay + cnt) ' Delay 1/4 s
 !outa[pin] ' Invert I/O pin output state

TIMING INTERVAL ERRORS

Although precise timing was not required for the last three blinking light code exam-
ples, there are many other situations where a precise time interval is crucial. Examples
include the Parallax Serial Terminal’s signaling for serial communication with the PC
and establishing a sample interval for taking sensor and signal measurements, which
will be utilized in the next chapter’s Sigma-Delta A/D conversion examples. The blink-
ing light example programs have two potential sources of “bugs” that contribute to an
inexact timing interval. First, they do not use a precise external clock, and second, code in
their waitcnt commands does not compensate for the time it takes other commands in
the repeat loops to execute. Both of these bugs are easy to spot and easy to fi x.

Wrong Clock Frequency Settings When a Spin top fi le does not specify the clock
settings, the Propeller uses its internal RCFAST setting by default. Although this oscillator is
nominally 12 MHz, the actual frequency can vary anywhere from 8 to 20 MHz. In contrast,
crystal oscillators are much more precise, with variations measured in parts per million,
or ppm, which indicates how many cycles per million the oscillator might vary. A typical
value for the 5-MHz crystal that comes with the many of the Propeller kits and boards is
+/- 30 ppm. Since this oscillator is only off by, at most, 30 signal cycles per million, the
Propeller will be off by, at most, 30 clock ticks per million. At 80 MHz, that’s, at most,
2400 clock ticks off, which is quite a bit better than +8 million or –4 million!

Applications that require accurate timing tend not to function correctly when the clock
settings that are supposed to specify the external crystal included on most Propeller kits
and demo boards are omitted. One example of symptoms this coding error can cause is
garbled messages displayed by the Parallax Serial Terminal. Without the more precise
timing provided by the external oscillator, the Propeller can end up communicating at
a baud rate that’s slightly different from the one specifi ed in the code. Figure 3-8 shows
the results with the correct system clock settings (above) and without them (below).

The incorrect clock settings bug is easy to create, observe, and fi x. Try this:

✓ Make a copy of the Parallax Serial Terminal QuickStart object in the Propeller
Library Examples folder, and rename it Test Missing Clock Settings.spin.

✓ Open Test Missing Clock Settings.spin with the Propeller Tool and change its pst.
Start(115200) method call to pst.Start(9600).

This will change the baud rate the Parallax Serial Terminal uses from 115200 bps
to 9600 bps.

✓ Change the Parallax Serial Terminal’s Baud Rate drop-down menu to 9600 bps.
✓ Load the program into the Propeller chip, and remember to click the Parallax Serial

Terminal’s Enable button as soon as the Propeller Tool’s Communication window
displays the Loading… message.

 Figure 3-8 Serial communication with and without the
external crystal settings.

COMMON MULTIPROCESSOR CODING MISTAKES 65

66 DEBUGGING CODE FOR MULTIPLE CORES

✓ Verify that the Parallax Serial Terminal displays the “Convert decimal to hexadeci-
mal…” message.

✓ Comment the _clkmode and _xinfreq system clock directives by placing an apos-
trophe to the left of each one.

This will make the Propeller Tool software’s Spin compiler ignore these directives
and instead use the default internal RCFAST clock settings.

✓ Use the Propeller Tool software to load the modifi ed program (with a clock con-
fi guration bug that throws off the serial communication signal timing) into the
Propeller.

While running the modifi ed program, the Parallax Serial Terminal will probably
display garbled messages similar to those on the right side of Fig. 3-8. To fi x the bug,
uncomment the _clkmode and _xinfreq system clock directives and load the corrected
program back into the Propeller chip.

' Test Missing Clock Settings.spin

CON
 ' *** Comment these two declarations to create the timing bug.
 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 pst : "Parallax Serial Terminal" ' Serial communication object

PUB go | value

 pst.Start(9600) ' Start Parallax Serial Terminal cog

"-------- Replace the code below with your test code ----------------

 pst.Str(String("Convert Decimal to Hexadecimal...")) ' Heading
 repeat ' Main loop
 pst.Chars(pst#NL, 2) ' Carriage returns
 ' Prompt user to enter value
 pst.Str(String("Enter decimal value: "))
 value := pst.DecIn ' Get value
 ' Announce output
 pst.Str(String(pst#NL,"Your value in hexadecimal is: $"))
 ' Display hexadecimal value
 pst.Hex(value, 8)

Incorrect Loop Interval Code Incorrect Loop Interval.spin has the correct clock
settings, but its timing is not yet precise because there is still a bug in the way the repeat
loop is written. The repeat loop currently delays for one-quarter of a second, inverts
the state of the I/O pin, and repeats the loop again. The loop is going slower than 4
Hz because the repeat and !outa[5] commands both take time to execute and there’s
nothing in the loop that compensates for it. Furthermore, adding more commands to
the loop would cause it to take even longer to repeat.

' Incorrect Loop Interval.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

VAR

 long stack[10] ' Stack for cog executing Blinker

PUB Go

 cognew(Blinker(5, clkfreq/4), @stack) ' Blinker method to new cog

PUB Blinker(pin, delay) " Blink light method

 dira[pin] := 1 ' Set I/O pin to output
 repeat ' Repeat loop
 waitcnt(delay + cnt) ' Delay 1/4 s
 !outa[pin] ' Invert I/O pin output state

Correct Loop Interval.spin shows a simple modification that keeps loop timing
precise. The command t := cnt just before the Blinker method’s repeat loop
copies the current number of clock ticks stored in the cnt register to the variable t.
Then, every time through the loop, the command waitcnt(t += delay) adds the
number of clock ticks in delay to t, and then waits until the cnt register catches
up. These synchronized delays were first introduced in Chap. 2.

' Correct Loop Interval.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

VAR

 long stack[10] ' Stack for cog executing Blinker

COMMON MULTIPROCESSOR CODING MISTAKES 67

68 DEBUGGING CODE FOR MULTIPLE CORES

PUB Go

 cognew(Blinker(5, clkfreq/4), @stack) ' Blinker method � new cog

PUB Blinker(pin, delay) | t " Blink light method

 t := cnt ' Get current cnt register value

 dira[pin] := 1 ' Set I/O pin to output
 repeat ' Repeat loop
 waitcnt(t+=delay) ' Synchronized delay
 !outa[pin] ' Invert I/O pin output state

The clkfreq register stores the number of clock ticks in 1 s, and, in the case of
Correct Loop Interval.spin, that’s 80,000,000 since the system clock is confi gured to
run at 80 MHz. When the cognew command launches the Blinker method into a new
cog, the Blinker method call passes 5 to the Blinker method’s pin parameter and clk-
freq/4 to its delay parameter. In this case, the delay parameter receives the result of
clkfreq/4, which is 80,000,000/4 = 20,000,000. Next, the command t := cnt copies
the current clock tick count stored by the cnt register into the Blinker method’s local
variable t.

Let’s assume that when the code gets to t := cnt that the cnt register holds the
value 600,000,025. After the I/O pin assignment, the code enters the repeat loop,
and then waitcnt(t+=delay) waits for the cnt register, which increments with every
clock tick, to accumulate to 620,000,025. The value that the waitcnt command waits
for is t+=delay, which is equivalent to t := t + delay. Since t stores 600,000,025
and delay stores 20,000,000, the result of t+=delay stored in t is 620,000,025. Then
the waitcnt command waits for the cnt register to accumulate to that value before
allowing the cog to continue executing code. Next time through the loop, t+=delay
adds another 20,000,000 to t, so the waitcnt commands waits for the cnt register to
get to 640,000,025. The third time through the loop, the waitcnt command waits for
660,000,025, and the fourth time through it waits for 680,000,25, and so on. Each time
through the loop, the waitcnt command waits for 20,000,000 ticks, which is the number
of clock ticks in quarter-seconds. So long as the rest of the commands in the loop
take less than one-quarter of a second to execute, it doesn’t matter how long they take
because the waitcnt command uses the t variable, which accumulates by the number
of clock ticks in a quarter of a second each time through the loop.

Code that Missed the Waitcnt Boat Continuing from the previous example,
now the cog executing the Blinker method is repeating the loop with a precise timing
interval of every 20,000,000 clock ticks. If the commands in the loop take longer than
20,000,000 clock ticks to execute, the waitcnt command will just keep waiting until the
cnt register eventually rolls over and gets back around to the target value. Since the cnt
register is 32 bits, it rolls over every 232 clock ticks. That’s 4,294,967,296 clock ticks,
which takes about 53.7 s when the Propeller’s system clock is running at 80 MHz.

The symptoms of this bug seem drastic because the cog appears to stop responding,
only to pick up where it left off almost 54 s later!

Delay Beyond Interval.spin has a bug that can easily miss the waitcnt boat. Let’s say
the pushbutton in Fig. 3-9 is supposed to control a second indicator light connected to
P6. The nested repeat while (ina[21]==1) loop prevents the outer loop from repeat-
ing until the pushbutton connected to P21 is released. A brief tap on the pushbutton
immediately after the LED changes state won’t cause the cog to miss the waitcnt boat,
but if you are still pressing the button one quarter of a second later, the P5 LED will
stop fl ashing and the cog will appear to stop responding because its waitcnt command
is waiting for a time that has already passed. Although the P5 LED will start blinking
again within 54 s, which proves that the cog is still functioning, it’s defi nitely a coding
error that needs to be fi xed.

' Delay Beyond Interval.spin

' This code has a bug that causes the cog to stop executing
' code for almost 54 seconds when the button connected to
' P21 is still pressed when the LED changes state.

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

VAR

 long stack[10] ' Stack for cog executing Blinker

 Figure 3-9 Test circuit.

COMMON MULTIPROCESSOR CODING MISTAKES 69

70 DEBUGGING CODE FOR MULTIPLE CORES

PUB Go

 cognew(Blinker(5, clkfreq/4), @stack) ' Blinker method � new cog

PUB Blinker(pin, delay) | t " Blink light method

 t := cnt ' Get current cnt register value
 dira[6] := 1 ' Set P6 to output
 dira[pin] := 1 ' Set I/O pin to output
 repeat ' Repeat loop
 waitcnt(t+=delay) ' Synchronized delay
 repeat while (ina[21]==1) ' *** BUG
 outa[6] := 1 ' Turn on P6
 outa[6]:=0 ' Turn P6 back off
 !outa[pin] ' Invert I/O pin output state

The application intended to have the light connected to P6 turn on when the
pushbutton connected to P21 was pressed. This is easy to do without disrupting
the cog’s timing because the ina[21] register will store 1 when the pushbutton is
pressed or 0 when it’s not pressed. To make the P6 light turn on, outa[6] needs to
store 1; to turn the light off, outa[6] should store 0. So the assignment outa[6] :=
ina[21] will turn the light on whenever the button is pressed and leave it off when
the button is released.

 repeat ' Repeat loop
 waitcnt(t+=delay) ' Synchronized delay
 outa[6] := ina[21] ' *** BUG -- fixed
 !outa[pin] ' Invert I/O pin output state

There are also situations where a loop should monitor a process until just before the
allotted time runs out. For example, let’s say the application needs the P6 LED to turn
off immediately when the button is released, without a potential quarter-second delay.
The previous code could take up to a quarter of a second before turning the light back
off, but maybe only a couple of milliseconds delay is acceptable. Here is an example
that monitors the P21 pushbutton and mirrors the state with the P6 I/O pin until about
a millisecond before the loop has to repeat.

 repeat
 waitcnt(t+=delay)
 !outa[pin]
 ' Keep repeating button LED loop until time is almost up.
 repeat until cnt-t => (delay - clkfreq/1000)
 outa[6] := ina[21] ' *** BUG -- fixed

The inner repeat loop continues its outa[6]:=ina[21] process until the current value
of the cnt register minus the value stored by the cnt register at the end of the previous

time interval is greater than or equal to some number of clock ticks that’s slightly less
than the outer loop’s time interval. In other words,

current cnt – previous cnt >= value slightly less than time interval

The statement repeat until cnt-t => (delay - clkfreq/1000) follows this
form. When the waitcnt command is done, the variable t stores the cnt register value
at the end of the previous time interval, which was the instant the waitcnt command
allowed the cog to continue to the next command. This value is subtracted from the cur-
rent value in the cnt register and then compared to the number of clock ticks in delay
- clkfreq/1000. That’s the number of clock ticks in a quarter of a second minus the
number of clock ticks in 1 ms, which is a value slightly less than the time interval stored
in the delay parameter.

WAITCNT TRICKS WITH RC DECAY

The RC Decay measurements in the next chapter rely on this approach to prevent
the cog that’s taking the measurement from getting stuck when the RC Decay
measurement takes longer than the allotted time.

COGS GET SENT TO DIFFERENT MEMORY ADDRESSES TO
EXCHANGE INFORMATION

When an application needs two or more cogs to exchange information, the applica-
tion code should be consistent about what memory address or addresses the cogs
access. Cogs Not Sharing Info (Bug).spin is an example where the cog executing the
Go method assumes the cog executing the Blinker method can see its delay local vari-
able. Meanwhile, the cog executing the Blinker method takes its own delay parameter
and uses it in a repeat loop. Even though each method is relying on a variable named
delay, they are two separate local variables. A local variable can only be accessed by
the method that declares it, so the Go and Blinker methods are accessing different
instances of a variable with the same name, and each instance resides at a different
memory address. So, regardless of the value entered into the Parallax Serial Terminal’s
Transmit windowpane, the Blinker method will continue to toggle the LED at the rate
it received when the Go method launched it into a new cog.

✓ Remember to set the Parallax Serial Terminal software’s Baud Rate back to 115200
before running this example program.

' Cogs Not Sharing Info (Bug).spin
' This program demonstrates a bug where different cogs fail
' to exchange information because they are both using local variables
' named delay.

COMMON MULTIPROCESSOR CODING MISTAKES 71

72 DEBUGGING CODE FOR MULTIPLE CORES

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

VAR

 long stack[10] ' Stack for cog executing Blinker

OBJ

 pst : "Parallax Serial Terminal"

PUB Go | delay ' Go method

 pst.Start(115200) ' Start Parallax Serial Terminal cog

 cognew(Blinker(5, clkfreq/4), @stack) ' Blinker method � new cog

 repeat ' Main loop
 pst.Str(String("Enter delay ms: ")) ' Prompt user input
 delay := pst.DecIn * (clkfreq/1000) ' User input � delay var

PUB Blinker(pin, delay) | t ' Blinker method

 t := cnt ' Current cnt register � t variable

 dira[pin] := 1 ' Set I/O pin to output
 repeat ' Repeat loop
 waitcnt(t+=delay) ' Synchronized delay
 !outa[pin] ' Invert I/O pin output state

Since all methods in an object can access global variables, the solution to this problem
is to modify the program so that both methods exchange information through a single
global variable named delay. The code in Cogs Sharing Info (Bug fi xed).spin corrects
the problem by declaring a global variable named delay. The Go method updates the
delay variable whenever a new value gets entered into the Parallax Serial Terminal,
and the Blinker method uses the delay variable’s value to control the rate of the loop
that toggles the LED circuit on and off.

' Cogs Sharing Info (Bug fixed).spin

CON ' Constant declarations

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

VAR ' Variable declarations

 long stack[10] ' Stack for cog executing Blinker
 long delay ' Global var for cogs to share

OBJ ' Object declarations

 pst : "Parallax Serial Terminal" ' Serial communication object

PUB Go ' Go method

 pst.Start(115200) ' Start Parallax Serial Terminal cog

 delay := clkfreq/4 ' Initialize delay variable

 cognew(Blinker(5), @stack) ' Launch Blinker method into new cog

 repeat ' Repeat loop
 pst.Str(String("Enter delay ms: ")) ' Prompt user for input
 delay := pst.DecIn * (clkfreq/1000) ' User input � delay var

PUB Blinker(pin) | t ' Blinker method

 t := cnt ' Current cnt register � t variable

 dira[pin] := 1 ' Set I/O pin to output
 repeat ' Repeat loop
 waitcnt(t+=delay) ' Synchronized delay
 !outa[pin] ' Invert I/O pin output state

In building block objects, this is the very same approach that makes it possible for
a method call to pass a value to another cog running different code inside the object
(see Fig. 3-4). When the building block object’s method gets called, that method sets
a global variable so that the method executed by the other cog (or assembly language
code) can access it.

MEMORY COLLISIONS

The Propeller chip’s architecture eliminates the possibility of memory collisions for any
single element in main memory. However, cogs sharing a group of memory elements
can still encounter problems if code is not in place that gives each cog exclusive access
to those elements. Figure 3-10 shows a typical memory collision scenario for cogs that
share more than one main memory element. In this scenario, one cog has updated two
of three variables while another cog jumped in and fetched all three. The one cog may
have been waiting for a sensor measurement for the third variable, so the other cog got
two up-to-date values and one old one. As mentioned earlier, the Propeller has built-in
lock bits that cogs can set when they are working on memory and clear when they are
done. Provided the code in all the cogs that are working with a particular group of shared
memory elements follows the same rules and waits for the lock bit to clear before setting

COMMON MULTIPROCESSOR CODING MISTAKES 73

74 DEBUGGING CODE FOR MULTIPLE CORES

it and working with the memory, this bug will never happen. The upcoming “Debugging
Tools Applied to a Multiprocessing Problem” section features an example of testing for
memory collisions and applying locks to resolve them.

WRONG ADDRESS PASSED TO A METHOD

Let’s say that the previous object, Cogs Sharing Info (Bug fi xed).spin, has been sepa-
rated into a top-level fi le and a building block object: Top File.spin and Building Block.
spin. Top File.spin gives Building Block.spin the nickname blink in its OBJ block.
The Building Block object has a Blinker method that will run in another cog and is
expected to monitor the Top File object’s global variable (as in Fig. 3-5). Following is
the working example of such an application.

Blink.Start(5, @delay) in Top File.spin passes 5 to the pin parameter in Building
Block’s Start method and passes the address of its delay variable to the delayAddr
parameter. Building Block’s Start method then launches the Blinker method into a
new cog and passes along both parameters for the Blinker method to work with. The
most common bug here is omission of the @ sign to the left of the delay variable in Top
File.spin’s Start method call. If the @ sign were missing, the blink.start method call
would pass the current value of the delay variable—in this case, clkfreq/4 from the
line of code just above it, instead of the Main RAM address of the delay variable.

" Top File.spin

CON ' Constant declarations

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

VAR ' Variable declarations

 Figure 3-10 Memory collision.

 long delay ' Delay variable

OBJ ' Object declarations

 pst : "Parallax Serial Terminal" ' Parallax Serial Terminal.spin
 blink : "Building Block" ' Building Block.spin object

PUB Go ' Go method

 pst.Start(115200) ' Start Parallax Serial Terminal cog

 delay := clkfreq/4 ' Initialize delay variable
 blink.Start(5, @delay) ' Call start method, P5 blink 2 Hz

 repeat ' Repeat loop
 pst.Str(String("Enter delay ms: ")) ' User prompt
 delay := pst.DecIn * (clkfreq/1000) ' User input � delay var

Building Block.spin has a Start method with a cognew command to launch its
Blinker method, passing along the pin and delayAddr parameters. Each time through
the Blinker method’s repeat loop, it uses delayAddr to fetch the current value of Top
File’s delay variable. Since delayAddr stores the address of the application object’s
delay variable, the expression Long[delayAddr] returns the value stored at that location
in main memory. So, instead of waitcnt(t+=delay), the Blinker method’s repeat loop
uses waitcnt(t+=long[delayAddr]). If @ had been omitted from @delay in Top File.
spin’s Start method call, Blinker would have received and attempted to use the value
20,000,000 for the address of the Top File object’s delay variable and any update the
Top File object makes to the value of its delay variable would go unnoticed, as Blinker
executed its repeat loop in another cog.

" Building Block.spin

VAR ' Variable declarations

 long stack[20], cog ' Stack array & cog variable

PUB Start(pin, delayAddr) : success
{{Start blinking process in a new cog.
 Parameters:
 pin - I/O pin number to send the high/low signal
 delayAddr - Address of the long variable that stores the delay
 Returns : zero if failed to start or nonzero if it succeeded}}

 ' Launch process into new cog and return nonzero if successful
 success := (cog := cognew(blinker(pin, delayAddr), @stack) + 1)

COMMON MULTIPROCESSOR CODING MISTAKES 75

76 DEBUGGING CODE FOR MULTIPLE CORES

PUB Stop "Stop blinking.

 if cog ' If cog is not zero
 cogstop(cog~ - 1) ' Stop cog & set cog to zero

PUB Blinker(pin, delayAddr) | t " Method blinks light
" Updates rate based on value in parent objects variable at
" delayAddr.

 t := cnt ' Current cnt register � t variable
 dira[pin] := 1 ' Set I/O pin to output
 repeat ' Repeat loop
 waitcnt(t+=long[delayAddr]) ' Delay from parent object's var
 !outa[pin] ' Invert I/O pin output state

FORGOTTEN LITERAL # INDICATOR FOR
ASSEMBLY LANGUAGE CODE

In Propeller assembly language, a line of code can have a label, and then a line of code
elsewhere in the program can use that label to make the program “jump to” that label
and continue executing code from there. The most rudimentary example of this is to
label one line of code with :loop, then later in the code, another line uses the jump-to
address (jmp) instruction to send the program back to the :loop label. The command
should read jmp #:loop, and the # literal indicator causes program execution to jump
to the instruction at the Cog RAM address of :label. A common mistake is to simply
type jmp :loop instead. If the literal indicator gets left out, the contents of the actual
machine language instruction (a binary value that corresponds to add count, #1 in
the following example) instead becomes the Cog RAM jump target address, and the
program wanders off somewhere unexpected.

:loop add count, #1
 wrlong count, addr
 jmp #:loop

Assembly Language Example As an aside, Asm Cog Example.spin has an assembly
language routine that counts and rapidly updates a Spin variable named asmCt. When
cognew launches an assembly routine into a cog, the fi rst argument is the address of a label
where the cog should start executing assembly language code. The address of the fi rst line
of assembly code that should be executed in Asm Cog Example.spin is @AsmCounter.
The second parameter is typically the address of a Spin variable in Main RAM that will
be used for information exchange between the assembly code and the Spin code. The
value in the second parameter gets copied to the cog’s par register, which is acces-
sible to the assembly code. In this case, the second parameter is @asmCt. The Spin code
expects the assembly code to update its asmCt variable with each repetition of its counting
loop, and the cog executing the Go method displays the value once per second.

" Asm Cog Example.spin

CON ' Constant declarations

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

VAR ' Variable declarations

 long asmCt ' Spin variable

OBJ ' Object declarations

 pst : "Parallax Serial Terminal" ' Parallax Serial Terminal.spin

PUB Go | t, dt ' Go method

 cognew(@AsmCounter, @AsmCt) ' Launch ASM code into new cog
 pst.Start(115200) ' Start Parallax Serial Terminal cog

 t := cnt ' Current cnt register � t variable
 dt := clkfreq ' Set up 1 second delay interval

 repeat ' Repeat loop
 waitcnt(t += dt) ' Synchronized delay
 pst.Home ' To top-left of terminal
 pst.Str(String(pst#NL, "AsmCt = ")) ' Display text
 pst.Dec(asmCt) ' Display deciaml asmCt val

DAT ' DAT block
 org ' ASM address reference
'
' Entry
'
AsmCounter mov addr, par ' Parameter reg � addr
 mov count, #0 ' count := 0
:loop add count, #1 ' count += 1
 wrlong count, addr ' asmCt:=count (see note)
 jmp #:loop ' Jump up 2 lines
'
' Uninitialized data
'
addr res 1 ' Cog RAM registers
count res 1

"NOTE: wrlong count, addr copies the cog's count register to asmCt,
"which is a variable at the address @asmCt in Main RAM.

COMMON MULTIPROCESSOR CODING MISTAKES 77

78 DEBUGGING CODE FOR MULTIPLE CORES

 Inside ASM Cog Example.spin TheDAT block in Spin programs can contain data and/or
assembly code. The org directive gives the assembly code a reference inside the cog for the
addresses of labels such as AsmCounter (address 0), :loop (address 2), and so on. As men-
tioned previously, the cognew command passed the address of the Spin asmCt variable as the
second argument in the cognew command, and that address gets copied to the cog’s par register.
The command mov addr, par copies the contents of the par register to a register named addr,
which was declared in the uninitialized data section at the bottom of the DAT block. The instruc-
tion mov count, #0 copies the value 0 to a register named count, which was also declared in
the uninitialized data section. Without the literal indicator, the command would instead copy
the contents of address 0 to the register named count. Since the contents of address 0 in this
example would be the machine language code for the mov addr, par assembly language
command, the jmp command would send the program to the wrong address.

The command add count, #1 adds 1 to the register named count. Next, wrlong
count, addr copies the value of count (a cog RAM register) to an address in Main
RAM. Since addr stores a copy of par, which in turn stores the address of the Spin
asmCt variable, the command wrlong count, addr copies the contents of the cog’s
register named count to the object’s asmCt Spin variable in Main RAM. The command
jmp #:loop causes the next instruction that gets executed to be add count, #1. Again,
remember to use the literal indicator with the jmp command to make the program jump
to a particular line of assembly code.

For more information on assembly language, see the Propeller Manual’s “Assembly
Language Reference.”

METHOD IN A NEW COG OUTGROWS STACK SPACE

This topic was already discussed in the previous chapter. If you add code to a method
that was launched into a new cog and you can’t see anything wrong with the code that
was added, check to make sure you allotted enough stack space.

Survey of Propeller Debugging Tools
This section focuses on four commonly used software tools for debugging Propeller
applications:

■ TV Terminal
■ Parallax Serial Terminal
■ ViewPort
■ Propeller Assembly Language Debugger

Some of these tools are simple text displays for checking variable values and text mes-
sages at certain points in the program, while others are more full-featured debuggers.

In addition to these tools, numerous debuggers of varying functionality and cost are avail-
able. Some are objects; others are objects combined with software. The best place to fi nd the
latest Propeller application debugger links, along with other software and applications, is in the
Propeller Chip forum’s Getting Started and Key Thread Index at http://forums.parallax.com.

http://forums.parallax.com

TV TERMINAL

The Propeller Demo Board in Fig. 3-11 was the fi rst Parallax board available with a built-
in Propeller chip, and it highlighted the Propeller chip’s multiprocessing capabilities with
microphone, PS/2 mouse, and PS/2 keyboard inputs along with stereo headphone, VGA,
and RCA video outputs. The two PS/2 connectors are shown in the upper-right of
Fig. 3-11, and the microphone is in the middle, to the right of the P3 and P4 labels. Along
the bottom, the stereo headphone, RCA, and VGA connectors are shown from left to right.
The Propeller Tool software that accompanied this board included example objects to
demonstrate all these features, and early Propeller designers made use of the RCA video
output to debug their code with a TV using the TV_Terminal object. More recent Propeller
boards and kits also have built-in audio/video connectors; kits and boards that do not have
them typically offer inexpensive adapter options so that just about any Parallax Propeller
kit can run demonstration objects that utilize the TV_Terminal object.

A number of Propeller Object Exchange (Obex) objects utilize the TV_Terminal
object and hardware to demonstrate the object’s functionality. To evaluate these objects,
either the Propeller chip can be connected to a TV or the demonstration object can be
ported to use the Parallax Serial Terminal. The Propeller Library’s Keyboard_Demo.
spin makes use of both the Keyboard and TV_Terminal objects to demonstrate a PS/2
keyboard; this requires both circuits shown in Fig. 3-12.

 Figure 3-11 Propeller Demo Board.

SURVEY OF PROPELLER DEBUGGING TOOLS 79

80 DEBUGGING CODE FOR MULTIPLE CORES

The left side of Fig. 3-12 shows the Propeller Demo Board’s 3-bit D/A converter (DAC)
circuit that the application uses to generate baseband video with the TV_Terminal object.
This circuit is also built into the Propeller Professional Development Board, and it can
be constructed on the Propeller Education Kit breadboard and the Propeller Proto Board
using the Parallax RCA–to–Breadboard adapter. The right side of Fig. 3-12 shows the PS/2
Keyboard circuit from the Propeller Demo Board. This circuit is also built into the Propeller
Professional Development Board and can be constructed on the Propeller Education Kit
breadboard with the Parallax PS/2 to Breadboard Adapter, or on the Propeller Proto Board
with either the PS/2 to Breadboard Adapter or the Propeller Proto Board Accessory Kit.

The Keyboard_Demo.spin object’s OBJ block declares the TV_Terminal and key-
board objects, giving them the nicknames term and kb. Both of these objects have
Start methods, so both the TV terminal and keyboard processes get launched into
other cogs. The application’s repeat loop then takes the result of the keyboard object’s
getkey method and passes it to the TV_Terminal object’s hex method, which displays
the hexadecimal value of the keyboard key that was pressed on the TV.

' Keyboard_Demo.spin

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 term : "tv_terminal"
 kb : "keyboard"

PUB start | i

 'start the tv terminal
 term.start(12)
 term.str(string("Keyboard Demo...",13))

 Figure 3-12 TV terminal and keyboard circuits.

 'start the keyboard
 kb.start(26, 27)

 'echo keystrokes in hex
 repeat
 term.hex(kb.getkey,3)
 term.out(" ")

After a quick look at the TV_Terminal object’s methods, we see it has an out method

that will cause TV_Terminal to echo the actual keystroke on the display. Here is a modifi ed
repeat loop for displaying the keyboard characters instead of their hexadecimal values.
Figure 3-13 shows the TV_Terminal output after some typing on the PS/2 keyboard.

 'echo keystrokes
 repeat
 term.out(kb.getkey)

PARALLAX SERIAL TERMINAL

The Parallax Serial Terminal introduced in Chap. 2 and featured in earlier examples in
this chapter also provides a convenient fi rst line of defense for catching program bugs
and circuit errors. By adding a few lines of code at key points in a program, the Parallax
Serial Terminal can display variable values and I/O pin states that bring simple mistakes
to light with minimal hair-pulling. There is also an object named PST Debug LITE,
available through the Propeller Chip forum’s Propeller Education Kit Labs, Tools, and

 Figure 3-13 TV terminal output.

SURVEY OF PROPELLER DEBUGGING TOOLS 81

82 DEBUGGING CODE FOR MULTIPLE CORES

Applications thread at http://forums.parallax.com. This object extends the functionality
of the Parallax Serial Terminal object to provide some additional debugging options.
Figure 3-14 shows an example of a display you might see if you incorporate the PST
Debug LITE object into your application.

Figure 3-14 PST Debug LITE Display in the Parallax Serial Terminal.

http://forums.parallax.com

PST Debug LITE allows you to add breakpoints and commands that display I/O
pin states and their directions, as well as lists of variables and their values, with a
few simple commands sprinkled into your code. This is one example in a set of free
resources available for debugging; others are available through the Propeller Chip
forum’s Getting Started and Key Thread Index at http://forums.parallax.com.

VIEWPORT

For more elusive bugs, as well as for folks who are accustomed to IDE-style PC pro-
gramming environments, Hanno Sander’s ViewPort software provides a powerful set of
tools for developing Propeller applications. ViewPort’s Spin language Debugger offers
familiar features like runtime stepping, breakpoints, and fl yover variable display and
update options, shown in Fig. 3-15a.

VIEWPORT—WHERE TO GET IT

The latest version of ViewPort is available for a 30-day free trial from www.
parallax.com. Just type “ViewPort” in the Search fi eld and click Go. ViewPort was
developed by Hanno Sander, and extensive application information and tutorials
are available from Hanno’s www.mydancebot.com web site.

ViewPort also takes advantage of the Propeller chip’s multicore design to provide
a more advanced set of instrumentation and diagnostic tools with no extra hardware
required. These tools are listed in Table 3-1 and shown in Fig. 3-15b, and they make it
possible to analyze Propeller chip programs and application circuits with instruments
that transform your Propeller chip into its own electronic workbench.

PASD—THE PROPELLER ASSEMBLY LANGUAGE DEBUGGER

Propeller Assembly Language can be especially useful for applications that require
higher-speed processing, precise timing, or both. There are already many published
objects with assembly code and Spin language interfaces for common tasks like com-
munication, sensor monitoring, motor control, a variety of math algorithms, video
display, and more. The Propeller Assembly Source Code Debugger (PASD) software
shown in Fig. 3-16 is a free yet invaluable tool for anyone who needs to modify existing
assembly code or write a Spin + assembly language object from scratch.

Later in this chapter we will see a brief PASD example that demonstrates set-
ting breakpoints, stepping through assembly code, checking variable values in the
Propeller chip’s processor (cog) and shared (Main) memory areas, and viewing I/O
pin states.

SURVEY OF PROPELLER DEBUGGING TOOLS 83

www.parallax.com
www.parallax.com
www.mydancebot.com
http://forums.parallax.com

84 DEBUGGING CODE FOR MULTIPLE CORES

TABLE 3-1 VIEWPORT TOOLS

DEBUGGING INSTRUMENTATION MORE

Text Terminal Logic analyzer Indicators and controls

IDE-style debugger Oscilloscope Fuzzy logic

 Spectrum analyzer Vision analysis
 XY-plot

 Figure 3-15a ViewPort software.

PASD—WHERE TO GET IT

The latest version of PASD is available as a freeware download from the PASD
(debugger) Project page on Andy Schenk’s Insonix company site:

www.insonix.ch/propeller/prop_pasd.html
This is a German language site with a link you can click for automatic Google

translation to English. The accolades and thank-you messages on the Parallax
Forum thread where Andy fi rst unveiled this software contribution to the Propeller
community are indeed well deserved.

http://forums.parallax.com/forums/default.aspx?f=25&m=214410

 Figure 3-15b ViewPort tools.

SURVEY OF PROPELLER DEBUGGING TOOLS 85

www.insonix.ch/propeller/prop_pasd.html
http://forums.parallax.com/forums/default.aspx?f=25&m=214410

86 DEBUGGING CODE FOR MULTIPLE CORES

Debugging Tools Applied to a
Multiprocessing Problem
This section chronicles the development of an object that manages a timekeeping pro-
cess in a separate cog and makes use of the software packages introduced in the previ-
ous section to test and debug at various stages. For the sake of keeping the example
programs short, the timekeeping object will only track minutes, seconds, and millisec-
onds. An expanded version of the object that provides full calendar information can be
obtained from http://obex.parallax.com.

DEVELOPMENT WITH THE PARALLAX SERIAL TERMINAL

The previous chapter and earlier examples in this chapter utilized the Parallax Serial
Terminal object to make the Propeller chip communicate with the Parallax Serial
Terminal software running on the PC. So the Parallax Serial Terminal object’s and
software’s usefulness for quick tests at various stages of object development has already
been demonstrated. This section will extend those examples and use the PST Debug
LITE object, which has method calls that add convenience to setting breakpoints and
displaying lists of variable values.

 Figure 3-16 PASD environment.

http://obex.parallax.com

Step 1: Test in the Same Cog Let’s say your Propeller application needs an object
to make periodic timestamps of the minute, second, and millisecond when a series of
events occurs, and a quick scan of http://obex.parallax.com didn’t yield any candidates.
Why not take a stab at writing a timestamp object from scratch? One way to get started
would be to test and make sure the code that’s counting time gets the correct sequence
for minutes, seconds, and milliseconds.

Test Time Counting.spin uses the PST Debug LITE object’s features to verify that
the code counts time increments in the correct sequence. The object does not yet have
millisecond pacing; it’s just going as fast as it can in Spin. The object declares PST
Debug LITE in the OBJ block and gives it the nickname debug. At the beginning of the
TimerMs method, debug.Style(debug#COMMA_DELIMITED) confi gures PST Debug LITE
to display comma-delimited lists. Since PST Debug LITE is really just the Parallax
Serial Terminal object with some additional features, its Start method needs to be
called in the same way the Parallax Serial Terminals object’s Start method is called.
Test Time Counting.spin uses debug.Start(115200). Near the end of the TimerMs meth-
od’s repeat loop, debug.KeyCheck checks the PST Debug LITE object’s serial receive
buffer to fi nd out if the Parallax Serial Terminal sent a character that was typed into
its Transmit windowpane. If the Propeller chip receives a character from the Parallax
Serial Terminal, the debug.Vars(@m, String("long m, s, ms")) method call passes
the address of the m variable along with a string copy of the variable declaration that
starts with the m variable.

" Test Time Counting.spin
" First test of timestamp code verifies proper counting sequence.

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 debug : "PST Debug LITE" ' Debug object

VAR

 long m, s, ms ' Timekeeping variables

PUB TimerMs

 debug.Style(debug#COMMA_DELIMITED) ' Configure debug display
 debug.Start(115200) ' Start debug cog

 repeat ' Infinite loop

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 87

http://obex.parallax.com

88 DEBUGGING CODE FOR MULTIPLE CORES

 ms++ ' Add 1 to millisecond count
 if ms == 1000 ' If milliseconds = 1000
 ms := 0 ' Set milliseconds to 0
 s++ ' Increment seconds
 if s == 60 ' If seconds = 60
 s := 0 ' Set seconds to 0
 m++ ' Increment minutes
 if m == 60 ' If minutes = 60
 m := 0 ' Set minutes to 0

 ' If key pressed, display variable list
 if debug.KeyCheck
 debug.Vars(@m, String("long m, s, ms"))

Since the PST Debug LITE object was confi gured to display comma-delimited lists,
calls to debug.Vars result in the variable lists shown in Fig. 3-17a. After loading the

 Figure 3-17a Variable display with Parallax Serial Terminal.

code and placing the cursor in the Parallax Serial Terminal’s Transmit windowpane, a
few quick keypresses to check the timestamp results look encouraging. The display in
Fig. 3-17b was obtained with some modifi cations to the code to verify that the variable
values roll over and increment in the correct order.

✓ Before trying the example programs in this section, uncheck the Parallax Serial
Terminal’s Echo On check box.

 The modifi ed Test Time Counting 2.spin code initializes the m, s, and ms variables to
995, 59, and 10, and the repeat loop is changed from unconditional to 8 repetitions. The
if debug.KeyCheck condition is commented, and the debug.Vars method call is out-
dented so that it is part of the repeat loop block but not part of any if conditions preceding
it. With these modifi cations, it displays eight steps in the sequence, from 10 minutes,
59 seconds, 996 milliseconds through 11 minutes, 0 seconds, 3 milliseconds.

 Figure 3-17b (Continued)

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 89

90 DEBUGGING CODE FOR MULTIPLE CORES

' Test Time Counting 2.spin
' ...

 debug.Start(115200) ' Start debug cog

 ms := 995 ' **Add
 s := 59 ' **Add
 m := 10 ' **Add

 repeat 8 ' ** Modify to 8 reps
 ms++ ' Add 1 to millisecond count

 ' ...

 if m == 60 ' If minutes = 60
 m := 0 ' Set minutes to 0

 'if debug.KeyCheck '**Comment
 debug.Vars(@m, String("long m, s, ms")) '**Outdent

Step 2: Establish Precise Time Base in Another Cog Now that we know the
counting sequence is correct, a next step in the development process might involve
establishing and testing a 1-millisecond time base. The “Incorrect Loop Interval Code”
section explained how waitcnt(clkfreq/1000 + cnt) is not precise enough for time-
keeping applications because it doesn’t take into account how long the other instruc-
tions in the loop might take. That section also introduced synchronized delay code for
accurate timekeeping. Here is a variation on the synchronized timekeeping loop:

 t := cnt ' Current clock counter
 dt := clkfreq/1000 ' Ticks in 1 ms

 repeat ' Infinite loop
 waitcnt(t+=dt) ' Wait for the next ms
 ' ...

Before entering the repeat loop, timekeeping code uses t := cnt to copy the
current value of the cnt register to the t variable. Remember that the cnt register
increments with every clock tick, so t := cnt copies the time at that moment into
the t variable. Next, the code copies the time increment clkfreq/1000 to a time
interval variable named dt. Inside the loop, waitcnt(t+=dt) adds dt, which is the
number of ticks in 1 ms, to the previously recorded value of t, and then waitcnt
waits until cnt register reaches that time. The next time the loop repeats, it again
adds the number of clock ticks in 1 ms to the previous value of t and then waits for
the cnt register to get to this next value. As long as the other commands in the loop do
not take longer than 1 ms to execute, this technique ensures that the 1-millisecond
time base will be maintained even though the other commands in the loop might
take varying amounts of time.

Step 3: Test the Timekeeping Code in Another Cog The “Code That Missed
the Waitcnt Boat” section demonstrated how the waitcnt(t+=dt) approach can be
unforgiving if the commands inside the loop exceed the time interval—1 ms in this
case. If debugging commands in the loop take too long to display the values, it can
cause the next waitcnt command to miss the value of the cnt register that it’s waiting
for. In that case, the cnt register will eventually get back to that target after it rolls
over. One way of preventing the debugging code from interfering with the time base
is to launch the time counting code with the precise delay into another cog. A separate
cog can then monitor the time counting values. Test Timestamp from Other Cog.spin
launches a version of the TimerMs method that has been modifi ed for precise timing
into another cog. Meanwhile, the cog executing the Go method allows you to periodi-
cally sample timestamps through the Parallax Serial Terminal by placing the cursor
in its Transmit windowpane and then periodically pressing a key on your computer
keyboard.

" Test Timestamp from Another Cog.spin
" This example program demonstrates an initial test of some
" timestamp prototype code that fails to expose a memory bug.

" IMPORTANT: This code has a hidden bug!!!

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 debug : "PST Debug LITE" ' Serial communication object

VAR

 long stack[40] ' Ample stack for prototyping
 long m, s, ms, t, dt ' Timekeeping variables

PUB Go | minutes, seconds, milliseconds

 debug.Style(debug#COMMA_DELIMITED) ' Configure debug display
 debug.Start(115200) ' Start debug cog

 cognew(TimerMs, @stack) ' Launch timekeeping cog

 repeat
 longmove(@minutes, @m, 3) ' Copy TimerMs vars
 debug.ListHome ' Display values
 debug.Vars(@m, String("| minutes, seconds, milliseconds"))
 debug.break

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 91

92 DEBUGGING CODE FOR MULTIPLE CORES

PRI TimerMs

 t := cnt ' Current clock counter
 dt := clkfreq/1000 ' Ticks in 1 ms

 repeat ' Infinite loop
 waitcnt(t+=dt) ' Wait for the next ms
 ms++ ' Add 1 to millisecond count
 if ms == 1000 ' If milliseconds = 1000
 ms := 0 ' Set milliseconds to 0
 s++ ' Increment seconds
 if s == 60 ' if seconds = 60
 s := 0 ' Set seconds to 0
 m++ ' Increment minutes
 if m == 60 ' If minutes = 60
 m := 0 ' Set minutes to 0

Judging from the Parallax Serial Terminal in Fig. 3-18, it’s working great, isn’t it?
Even with modifi cations similar to the previous code that test at times like 10 minutes,
59 seconds, 999 milliseconds, it is unlikely to expose a hidden memory collision bug
in Test Timestamp from the Other Cog.spin.

 Figure 3-18 Initial timestamp test.

Step 4: Remember that Multiple Processors Are Involved and Test! Going
back to the “Common Multiprocessor Coding Mistakes” list, we can check off a few
possible bugs already. The timing interval is correct, and it doesn’t miss the waitcnt
boat. The two cogs are using global variables to exchange values and appear to be
doing so correctly. However, memory collisions have not been ruled out. Remember
from the “Memory Collisions” section that cogs using groups of variables to exchange
information can end up exchanging a combination of new and old values if locks are
not used to give commands executed by different cogs exclusive access to the group
of memory elements. Since Test Timestamp from Another Cog.spin is now executing
code in two separate cogs accessing the same group of variables, it stands to reason that
the longmove command might copy values at unexpected instants, such as when the
ms variable stores 1000 or when the s variable stores 60. Since the ms variable should
only store 0...999 and the s variable should only store 0...59, this would be a bug that
could, in turn, cause other bugs in the application.

If there really is a potential memory collision problem in this code, the best way
to expose it is to initialize the values to a point where they are about to roll over and
then run the code in slow motion, with long delays. The long delays make windows
of opportunity for memory collisions to occur. The cog making copies of the group of
variables can also sample it more quickly than the timekeeping cog updates it, which
should expose the bug, if there is one. In Find Hidden Bug in Timestamp.spin, the dt
variable is assigned the number of clock ticks in one second instead of the number of
ticks in a millisecond, and there are quarter-second delays after each timekeeping
variable is incremented. The Go method’s repeat loop checks the timestamp eight times,
one-third of a second apart.

" Find Hidden Bug in Timestamp.spin
' ...
'

PUB Go | minutes, seconds, milliseconds

' ...
'
 cognew(TimerMs, @stack) ' Launch timekeeping cog

' ...
'
 m := 10 ' **Add
 s := 59 ' **Add
 ms := 999 ' **Add

 repeat 8 ' **Modify to 8 reps Main loop
 waitcnt(clkfreq/3+cnt) ' **Add
 longmove(@minutes, @m, 3) ' Copy timestamp vars
 'debug.break ' **Remove
 debug.Vars(@m, String("| minutes, seconds, milliseconds"))

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 93

94 DEBUGGING CODE FOR MULTIPLE CORES

PRI TimerMs

 t := cnt ' Current clock counter
 dt := clkfreq'/1000 ' **Modify Ticks in 1 ms

 repeat ' Infinite loop
 waitcnt(t+=dt) ' Wait for the next ms
 ms++ ' Add 1 to millisecond count
 waitcnt(clkfreq/4+cnt) ' **Add
 if ms == 1000 ' If milliseconds = 1000
 ms := 0 ' Set milliseconds to 0
 s++ ' Increment seconds
 waitcnt(clkfreq/4+cnt) ' **Add
 if s == 60 ' if seconds = 60
 s := 0 ' Set seconds to 0
 m++ ' Increment minutes
 waitcnt(clkfreq/4+cnt) ' **Add
 if m == 60 ' If minutes = 60
 m := 0 ' Set minutes to 0

With this modifi ed program, the results of possible memory collisions are now
exposed. Take a look at the third and fourth lines in Fig. 3-19 Parallax Serial Terminal

 Figure 3-19 Timestamp test—memory collisions exposed.

display. The timestamp should never contain 1000 milliseconds or 60 seconds. The
previous keypress example program might have exposed this same bug over time, but
it would have taken a lot of keypresses!

Step 5: Fix the Bug Exposed by the Testing Locks provide an effective remedy
for the memory collisions that can occur when two cogs exchange memory using a group
of variables. The Propeller microcontroller’s main memory has eight semaphore bits,
called locks or lock bits, and the Spin language has a set of commands for using them.
The locknew command checks out a lock bit from the pool. Once a lock bit has been
checked out, lockset and lockclr can set and clear it, and lockret can return it to the
pool. Cogs that access common memory then use code that checks a given lock bit before
accessing memory. If the lock bit is set, the code makes the cog wait for the other cog
accessing the memory to clear it fi rst. If the lock bit is not set, the cog has to set it before
accessing the memory and then clear the bit when it’s fi nished accessing the memory.

LOOKING UP LOCKS

The lock management commands are available in both Spin and Propeller Assembly.
The Propeller Manual discusses the use of locks in detail and has code examples for
both languages in their respective reference sections. The Propeller Manual is avail-
able in print and is included as a tagged PDF in the Propeller Tool software’s Help.

Using locks in Spin programs essentially boils down to the following code excerpt.
This code fi rst checks out a lock bit using locknew, and it stores the result (0…7 or -1
if no locks are available) in a variable named semID. Next, code in any cog that accesses
the memory has to wait for that lock bit to be clear before setting it and modifying the
Main RAM. The repeat until not lockset(semID) loop does this by repeatedly
setting lockset. Since lockset returns the previous state of the lock, it will return true
if it was already set by another cog. In that case, the repeat loop will keep trying until
lockset returns 0. When it returns 0, the fact that lockset was called means it was set
to 1, this time by the cog waiting for access. Since the condition of the repeat loop is
not lockset(semID), when it returns 0, the NOT of 0 is TRUE, so the repeat loop will
allow the code to move on and access the shared memory. As soon as the code is done
with the shared memory, it should immediately use lockclr(semID) to clear the lock
and minimize the amount of time other cogs have to wait for memory access.

 '
 ' Code in one cog
 '
 if (semID := locknew) == -1 ' If lock, check one out
 pst.Str(String("Error, no locks!")) ' Else display error
 '
 '...
 '

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 95

96 DEBUGGING CODE FOR MULTIPLE CORES

 repeat until not lockset(semID) ' Wait till clear, set lock
 '" Shared memory operations
 lockclr(semID) ' Clear lock
 '
 '...code in anther cog
 '
 repeat until not lockset(semID) ' Wait till clear, set lock
 '" Shared memory operations
 lockclr(semID) ' Clear lock

Step 6: Test the Bug Fix Test Timestamp Bug Fix.spin uses the lock approach
and tests for memory collisions by leaving in the extra delays to keep that memory
collision window wide open. The semID variable declaration and locknew, lockset,
and lockclr commands that were added to fi x the bug are labeled with ***Fix in
the comments. In the Go method, the lock is set before the longmove command and is
cleared immediately afterwards. This is all that’s needed in the Go method for memory
access, and it happens quickly. In the TimerMs method, which gets executed by another
cog, the lock gets set before the code starts modifying the ms variable, and it continues
through the s and then m variables. When it’s done with the m variable, it clears the lock
again before the loop repeats.

" Test Timestamp Bug Fix.spin
" This program tests to verify that semaphores prevent memory
" memory collisions.

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 debug : "PST Debug LITE" ' Serial communication object

VAR

 long stack[40] ' Ample stack for prototyping
 long m, s, ms, t, dt ' Timekeeping variables
 long semID ' ***Fix Semaphore ID variable

PUB Go | minutes, seconds, milliseconds

 debug.Style(debug#COMMA_DELIMITED) ' Configure debug display
 debug.Start(115200) ' Start debug cog

 if (semID := locknew) == -1 ' ***Fix If no locks in pool

 debug.Str(String("Error, no locks!")) ' ***Fix Display error message
 cognew(TimerMs, @stack) ' Launch timekeeping cog

 m := 10 ' **Add
 s := 59 ' **Add
 ms := 999 ' **Add

 repeat 8 ' **Modify to 8 reps Main loop
 waitcnt(clkfreq/3+cnt) ' **Add
 repeat until not lockset(semID) ' ***Fix Wait for lock, set
 longmove(@minutes, @m, 3) ' Copy timestamp vars
 lockclr(semID) ' ***Fix Clear lock
 'debug.break ' **Remove
 debug.Vars(@m, String("| minutes, seconds, milliseconds"))

PRI TimerMs

 t := cnt ' Current clock counter
 dt := clkfreq'/1000 ' **Modify Ticks in 1 ms

 repeat ' Infinite loop
 waitcnt(t+=dt) ' Wait for the next ms
 repeat until not lockset(semID) ' ***Fix Wait for lock, set
 ms++ ' Add 1 to millisecond count
 waitcnt(clkfreq/4+cnt) ' **Add
 if ms == 1000 ' If milliseconds = 1000
 ms := 0 ' Set milliseconds to 0
 s++ ' Increment seconds
 waitcnt(clkfreq/4+cnt) ' **Add
 if s == 60 ' if seconds = 60
 s := 0 ' Set seconds to 0
 m++ ' Increment minutes
 waitcnt(clkfreq/4+cnt) ' **Add
 if m == 60 ' If minutes = 60
 m := 0 ' Set minutes to 0
 lockclr(semID) ' ***Fix Clear lock

Judging by the Parallax Serial Terminal display in Fig. 3-20, the bug has been
fi xed. As this program runs, you’ll be able to see a visible pause between the second
and third lines as the code waits for the cog running the TimerMs method to clear
the lock.

When all the extra waitcnt commands are removed and dt is restored to the number
of ticks in a millisecond (clkfreq/1000), the code should now resemble Test Timestamp
Bug Fix Full Speed.spin. Placement of the lockclr command immediately after longmove
in the Go method will be especially important. If the lockclr command were instead
placed after the debug.Vars call, the cog running the TimerMs method would wait so

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 97

98 DEBUGGING CODE FOR MULTIPLE CORES

long for the lock to clear that its waitcnt command would miss the target cnt register
value in the next iteration of its repeat loop (missing the waitcnt boat bug).

Step 7: Remove Test Code The next step is to remove the delays that were added
for the sake of exposing the memory collisions. In other words, all the lines of code
with comments labeled ** need to be reversed, and the best way to make sure you don’t
miss any is with a Search…Replace. All lines with **Add comments can be removed.
Likewise, all the lines of code with **Remove can be uncommented, and all the lines
with **Modify can be unmodifi ed. It’s important that you don’t forget to restore dt :=
clkfreq back to dt := clkfreq/1000. After one last test to make sure the code still cor-
rectly timestamps events, it’s ready to get incorporated into a building block object.

" Test Timestamp Bug Fix Full Speed.spin
" This program tests to verify that semaphores prevent memory
" memory collisions at full speed, no slow motion delays.

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

 Figure 3-20 Timestamp test—memory collisions corrected.

OBJ

 debug : "PST Debug LITE" ' Serial communication object

VAR

 long stack[40] ' Ample stack for prototyping
 long m, s, ms, t, dt ' Timekeeping variables
 long semID ' ***Fix Semaphore ID variable

PUB Go | minutes, seconds, milliseconds

 debug.Style(debug#COMMA_DELIMITED) ' Configure debug display
 debug.Start(115200) ' Start debug cog

 if (semID := locknew) == -1 ' ***Fix If no locks in pool
 debug.Str(String("Error, no locks!")) ' ***Fix Display error message
 cognew(TimerMs, @stack) ' Launch timekeeping cog

 repeat ' Main loop
 repeat until not lockset(semID) ' ***Fix Wait for lock, set
 longmove(@minutes, @m, 3) ' Copy timestamp vars
 lockclr(semID) ' ***Fix Clear lock
 debug.break ' Breakpoint
 debug.Vars(@m, String("| minutes, seconds, milliseconds"))

PRI TimerMs

 t := cnt ' Current clock counter
 dt := clkfreq/1000 ' Ticks in 1 ms

 repeat ' Infinite loop
 waitcnt(t+=dt) ' Wait for the next ms
 repeat until not lockset(semID) ' ***Fix Wait for lock, set
 ms++ ' Add 1 to millisecond count
 if ms == 1000 ' If milliseconds = 1000
 ms := 0 ' Set milliseconds to 0
 s++ ' Increment seconds
 if s == 60 ' if seconds = 60
 s := 0 ' Set seconds to 0
 m++ ' Increment minutes
 if m == 60 ' If minutes = 60
 m := 0 ' Set minutes to 0
 lockclr(semID) ' ***Fix Clear lock

Step 8: Incorporate into a Building Block Object Now that the code is known
to work, it’s time to move it into a building block object. Test Timestamp Object.spin is
an example of a top-level object that utilizes the new Timestamp Object. Notice it does

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 99

100 DEBUGGING CODE FOR MULTIPLE CORES

not have to concern itself with any locks. All it has to do is (1) declare the Timestamp
Object, (2) call its Start method and pass the start time, and (3) call its GetTime method
to get a timestamp. From this application object’s standpoint, the code is simple and it
can be oblivious to all the cog and lock bookkeeping the Timestamp object takes care
of. This is a typical hallmark of a Propeller Library or Propeller Object Exchange object
that manages a process in another cog. It takes care of any cog and lock details, and
provides method calls and/or a memory interface for exchanging information with the
application-level object.

" Test Timestamp Object.spin
" Wait for key press and display ms since TimerMs was launched into a cog.

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz x 16 = 80 MHz

OBJ

 debug : "PST Debug LITE" ' Serial COM object
 time : "Timestamp Object" ' TimeStamp object

PUB Go | minutes, seconds, milliseconds

 debug.Style(debug#COMMA_DELIMITED) ' Configure debug display
 debug.Start(115200) ' Start debug cog
 time.Start(10, 59, 999) ' Start timestamp cog

 repeat ' Main loop
 time.GetTime(@minutes) ' Get a timestamp
 debug.ListHome ' Display timestamp vars
 debug.Vars(@minutes, String("| minutes, seconds, milliseconds"))
 debug.break ' Set breakpoint

In addition to all the cog bookkeeping and stack declaration, when the TimerMs
method gets moved into its own building block object, it should take care of all the
locks. Timestamp Object.spin is one approach to incorporating the TimerMs method
into a building block object. Before launching the TimerMs method into a new cog,
the Start method checks out a lock. Before shutting down the cog, the Stop method
returns the lock. As with earlier examples, commands in the object’s other methods
that get called have to wait for the lock to clear and then set it before performing any
operations on the m, s, and ms variables. Those are the object’s three global variables
shared by the cog executing the TimerMs method and the cog executing other methods
such as GetTime and SetTimer.

This design allows the application object’s code to concern itself with just one thing:
getting the timestamp whenever it needs it. As you examine the Timestamp Object,

keep in mind that all the methods except TimerMs are executed by the same cog that’s
executing the Test Timestamp Object’s methods. In other words, the same cog that’s
executing the repeat loop in the Test Timestamp object makes a call to time.GetTime,
executes the code in the Timestamp Object’s GetTime method and returns. Meanwhile,
the Timestamp Object’s TimerMs method is executed by a different cog. The Timestamp
Object’s GetTime and SetTimer methods both use the memory access approach shown
in Fig. 3-4, and they rely on the TimerMs method executed by another cog to keep the
m, s, and ms variables updated with the current time.

" Timestamp Object.spin
" Supplies minutes, seconds, milliseconds timestamp upon request.

VAR

 long stack[40] ' Ample stack for prototyping
 long t, dt, m, s, ms ' Timekeeping variables
 long semID, cog ' Semaphore ID and cog variables

PUB Start(minutes, seconds, milliseconds) : success
{{Start timekeeping in a new cog.
 Parameters:
 minutes - starting minutes count
 seconds - starting seconds count
 milliseconds - starting milliseconds count
 Returns : 0 if failed to start or nonzero if it succeeded}}

 longmove(@m, @minutes, 3) ' Copy local � global variables

 ' If checked out lock and launched new cog, return nonzero, else
 ' return zero.
 if not semID := locknew ' If checked out a lock
 Stop ' Stop if already running
 ' Launch process into new cog and return nonzero if successful
 success := (cog := cognew(TimerMs, @stack) + 1)

PUB Stop "Stop timekeeping.

 if cog ' If cog is not zero
 lockret(semID)
 cogstop(cog~ - 1) ' Stop cog & set cog to zero

PUB SetTimer(minutes, seconds, milliseconds)
{{Set the timer.
 Parameters:
 minutes - minutes count
 seconds - seconds count
 milliseconds - milliseconds count}}

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 101

102 DEBUGGING CODE FOR MULTIPLE CORES

 repeat until not lockset(semID) ' Set lock on time variables
 longmove(@m, @minutes, 3) ' Copy values received
 lockclr(semID) ' Clear lock on time variables

PUB GetTime(minAddr) " Get current timestamp
{{Get the current timestamp.
 Parameters:
 minAddr - address of the caller's minutes variable

 IMPORTANT: Caller must declare long variables in this sequence:
 minutes, seconds, milliseconds}}

 repeat until not lockset(semID) ' Set lock on time variables
 longmove(minAddr, @m, 3) ' Copy times to caller's vars
 lockclr(semID) ' Clear lock on time variables

PRI TimerMs

 t := cnt ' Current clock counter
 dt := clkfreq/1000 ' Ticks in 1ms

 repeat ' Infinite loop
 waitcnt(t+=dt) ' Wait for the next ms
 repeat until not lockset(semID) ' Set lock
 ms++ ' Add 1 to millisecond count
 if ms == 1000 ' If milliseconds = 1000
 ms := 0 ' Set milliseconds to 0
 s++ ' Increment seconds
 if s == 60 ' if seconds = 60
 s := 0 ' Set seconds to 0
 m++ ' Increment minutes
 if m == 60 ' If minutes = 60
 m := 0 ' Set minutes to 0
 lockclr(semID)

DEVELOPMENT WITH VIEWPORT

ViewPort has a code view that provides an IDE-style debugger for the top-level object.
You can use ViewPort to monitor variable values, set breakpoints, run, pause, and step.
You can also use it to modify variable values before continuing from a breakpoint.
In addition, ViewPort makes it possible to look at variable behavior graphically with
oscilloscope, logic analyzer, spectrum analyzer, and other tools. For analysis of the
timekeeping application, the oscilloscope can provide graphical verifi cations that the
timekeeping object functions as intended.

Note: New ViewPort functions and features are on the horizon at the time of
this writing. To check for updated versions of code examples from this section
that are compatible with the latest version of ViewPort, go to ftp.propeller-chip.

com/PCMProp/Chapter_03/Source/. As mentioned earlier, the latest version of
ViewPort is available for a 30-day free trial from www.parallax.com.

The ViewPort software communicates with the Propeller through an object named
conduit that launches a variable monitoring and communication process into another
cog. For debugging, the conduit object has to be confi gured by the top level object’s
Spin code to work with the ViewPort debugger. The .spin fi les that will be debugged also
have to be placed in the same directory with certain objects that are packaged with the
ViewPort installation. Below is a list of general steps for preparing a .spin application
for debugging with ViewPort:

■ Copy objects into C:\Program Files\ViewPort...\mycode.
■ Open the top object with ViewPort by clicking the code tab and then using File →

Open to fi nd the fi le.
■ Remove any object that might try to communicate with the PC through the Propeller

chip’s programming connection (for example, Parallax Serial Terminal or PST
Debug LITE).

■ For debugging, make sure the Propeller’s system clock is set to 80 MHz.
■ Declare the conduit object, typically by adding vp:"conduit" to the OBJ block.
■ Call the conduit object’s config method and pass it a list of the variable names.
■ Pass the start and end addresses of the contiguous list of variables that you want to

be able to monitor and update to the ViewPort object’s share method. The variable
names passed to the config method must correspond with these variables.

Test Timestamp Object with ViewPort.spin started out as the program in the previ-
ous example: Test Timestamp Object.spin. With the modifi cations just discussed, it’s
now ready for ViewPort debugging. The call to the conduit object’s config method
sends a list of variable names: "var:minutes,seconds,milliseconds". The code also
passes the addresses of the start and end variables in the list with a call to vp.share, so
ViewPort will monitor @minutes through @milliseconds. Make sure to keep the names
in the config method call the same as the names of the variables in your code. This will
ensure that you can use all of ViewPort’s debugging features with those variables.

" Test Timestamp Object with ViewPort.spin
" Check minutes, seconds, and milliseconds in code tab's Watch
" windowpane and signal timing in the dso tab's Oscilloscope.

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz x 16 = 80 MHz

OBJ

 vp : "conduit" ' ViewPort conduit object
 time : "TimeStamp Object" ' TimeStamp object

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 103

www.parallax.com

104 DEBUGGING CODE FOR MULTIPLE CORES

PUB Go | minutes, seconds, milliseconds
 ' Configure ViewPort display & share @minutes through @milliseconds.
 vp.config(String("var:minutes,seconds,milliseconds"))
 vp.share(@minutes, @milliseconds)

 time.Start(10, 59, 999) ' Start timestamp cog

 repeat ' Main loop

 time.GetTime(@minutes) ' Get a timestamp

To run the program in ViewPort:

✓ Copy the following objects to the C:\Program Files\ViewPort…\mycode directory:
 Test Timestamp Object with ViewPort.spin
 TimeStamp Object

✓ Open ViewPort.
✓ Click the code tab.
✓ Set the drop-down menu above the Spin Files list to the mycode directory.
✓ Open the program (Test Timestamp Object with ViewPort.spin).
✓ Click the Start Debugging button. The Start Debugging button looks like the trian-

gular play button on most music and video players.
✓ Examine the variables listed in the lower-left Watch windowpane.

The Watch windowpane in Fig. 3-21 will show the minutes, seconds, and
milliseconds variables and their values. While the program is running, the repeat loop
repeatedly updates the minutes, seconds, and milliseconds variables. Meanwhile, the
conduit object uses another cog to stream those variable values to the PC, where the
ViewPort software updates its display with their values. As you watch these variables
counting upwards, it provides a quick verifi cation that the Timestamp Object is provid-
ing the current times as expected.

ViewPort has a variety of graphical analysis tools, and one that’s exceedingly useful
for evaluating this object is the digital storage oscilloscope (dso) view. This view can
graphically display the minutes, seconds, and milliseconds variables. The dso view
shown in Fig. 3-22 also has measurement tools for quickly verifying that the minutes,
seconds, and milliseconds variables really are keeping time according to minutes,
seconds, and milliseconds.

Follow these instructions to perform the test shown in Fig. 3-22:

✓ If it’s not currently active, click the Start Debugging button in the code tab.
✓ Click dso tab.
✓ In the Overview table in the lower-right area, click the Plot buttons next to millisec-

onds and seconds.
✓ Adjust the Horizontal dial to 500 ms/div.
✓ In the Trigger tab below the Oscilloscope display, click Continuous → Ch1 → Fall,

and Normal.

✓ Adjust the trigger threshold along the left of the display so that it is in the middle of
the milliseconds triangle wave.

✓ Click the stop button.
✓ Click the Cursor tab and then click the Horizontal and Vertical cursor buttons.

Horizontal and vertical cursors will appear as dotted lines on the Oscilloscope dis-
play. The cursors can be clicked and dragged, and the Cursors section in the lower-right
ViewPort Cursors table displays the time difference between the vertical cursors and
the amplitude difference between the horizontal cursors.

✓ Drag the vertical and horizontal cursors so that they frame one of the triangles in the
milliseconds trace in Fig. 3-22.

✓ Examine the Cursors table.

 Figure 3-21 ViewPort timestamp variable monitoring.

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 105

106 DEBUGGING CODE FOR MULTIPLE CORES

The Cursors table should indicate that the difference between the vertical cursors
is about 1 s and the difference between the horizontal cursors is about 1000 ms. The
cursor mode slider also has Pan and Zoom features for getting a closer look at a given
waveform.

✓ Try it.

Adding Terminal Functionality to ViewPort Let’s say the next task at hand is to
count events and send an alarm message when 11 events have occurred. The ViewPort
debugger has a Terminal pane that can be used to send character “events” to the Propeller

 Figure 3-22 ViewPort dso view.

chip. The corresponding terminal object that the Propeller application code uses has all
the same functionality as conduit, but it also supports terminal communication, and
even includes familiar method calls like Char, CharIn, Dec, DecIn, and more from the
Parallax Serial Terminal object. In general, additional changes that have to be made for
debugging with ViewPort’s terminal object include:

■ Replace the conduit object declaration with a terminal object declaration.

vp : "terminal" ' ViewPort conduit object

■ Add two longs for sending characters to, and receiving characters from, the terminal
immediately before the contiguous list of long variables.

long vptx, vprx
 long minutes, seconds, milliseconds, count

■ Add a confi g method call with a string that confi gures the terminal.

vp.config(String("start:terminal::terminal:1"))

■ Update your vp.confi g and vp.share calls to include the transmit and receive variables
that were added to the variable declarations in a previous step.

 vp.config(String("var:vptx,vprx,minutes,seconds,milliseconds,count"))
vp.share(@vptx, @count)

Test Timestamp Object with ViewPort Events.spin incorporates those changes into
the test program, along with some code that waits to receive a character from ViewPort’s
Terminal. The Test Timestamp… object’s Go method’s repeat loop checks repeat-
edly for a character in the terminal object’s input buffer. When the RxCheck method
returns something other than -1, it indicates that there’s a character waiting in the buffer,
which in turn indicates that a character was typed into ViewPort’s Terminal. The Test
Timestamp… object waits for this event with if vp.RxCheck <> -1. When the event
occurs, code in the if statement block clears the input buffer by calling vp.RxFlush, and
then it gets a timestamp from the Timestamp object. Next, if count++ == 10 compares
the count variable to 10 and then post-increments it. If the count variable is equal to
10, code in the nested if block calls the Alarm method. The Alarm method sends the
string "Alarm!" to the terminal. While the actual event might be triggered by a sensor
and the alarm might be a signal to a speaker, this application is useful for prototyping.
For example, if the sensor sample is still on its way in the mail, you can still make
progress and have application code under way before the sensor arrives.

" Test Timestamp Object with ViewPort Events.spin
" Use ViewPort to get events from the keyboard and test to make sure
" the alarm occurs after eleventh event.

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 107

108 DEBUGGING CODE FOR MULTIPLE CORES

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings
 _xinfreq = 5_000_000 ' 5 MHz x 16 = 80 MHz

OBJ

 vp : "terminal" ' ViewPort conduit object
 time : "Timestamp Object" ' TimeStamp object

VAR

 long vptx, vprx
 long minutes, seconds, milliseconds, count

PUB Go ' Go method
 'Configure ViewPort for Terminal communication, variable display,
 'and share @vptx through count.
 vp.config(String("start:terminal::terminal:1"))
 vp.config(String("var:vptx,vprx,minutes,seconds,milliseconds,count"))
 vp.share(@vptx,@count)
 waitcnt(cnt+clkfreq)
 vp.clear

 time.Start(10, 59, 999) ' Start timestamp cog

 repeat ' Main loop
 if vp.rxcheck <> -1 ' If key in buffer
 vp.RxFlush ' Clear buffer
 time.GetTime(@minutes) ' Get a timestamp
 vp.Dec(Count) ' Count to Terminal
 if count++ == 10 ' Call alarm when count=10
 Alarm

PUB Alarm ' Alarm method

 vp.Str(String("Alarm!")) ' Display alarm string in Terminal
 count~ ' Clear count variable

The Test Timestamp… object makes it possible to effectively utilize ViewPort’s
debugging features, including terminal, stepping, and variable modifi cation, shown in
Fig. 3-23.

To debug the Test Timestamp Object with ViewPort Events.spin object, follow these
steps:

✓ Copy Test Timestamp Object with ViewPort Events.spin to C:\Program Files\
ViewPort...\mycode.

✓ With ViewPort in code view, open Test Timestamp Object with ViewPort Events.
spin.

✓ Click the Start Debugging button.
✓ Place your cursor in the Terminal fi eld, and press the ENTER key a few times.

Each time, the Watch window should update the variable values.
✓ Hover your mouse cursor over the buttons to the right of the Start Debugging button

to make their fl yover labels appear. Use them to locate the Pause, Step Over, and
Step Into buttons.

✓ Next, click the Pause button, and repeatedly click the Step Over button.

 Figure 3-23 Terminal, stepping, and variable modifi cation.

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 109

110 DEBUGGING CODE FOR MULTIPLE CORES

The yellow highlighter indicating the line that gets executed will not step into the if
vp.RxCheck <> 1 statement’s code block because there is no character waiting in the
terminal object’s receive buffer.

✓ Click ViewPort’s Terminal fi eld and press your keyboard’s ENTER key. Then, click
the Step Over button three more times.

This time, the yellow highlighter that indicates the active line of code should advance into
the code under the if block. The third step will place the active line at the vp.Dec(count)
line. The next line will only call the Alarm method if count is equal to 10.

✓ Hover the cursor over the count variable in the if count++ == 10 line and wait for
the fl yover with the variable value to appear.

✓ Click the value in the fl yover and change it to 10.
✓ Click the Step Into button.

The active line highlighter should jump into the Alarm method. In the Calls window,
it will indicate that the code being executed is in the Alarm method. After the vp.str
call, the “Alarm!” text should appear in the Terminal.

Also, try this:

✓ Set a breakpoint on vp.Dec(count) by clicking the line number next to that line of
code. Then, click the Start Debugging button.

✓ A red breakpoint marker should appear on that line. Since no character is in the
buffer, the code still can’t get to it.

✓ Click the Terminal and press the ENTER key.

The active line highlighter will appear over the breakpoint.

✓ Change the value of count to 10 again, but this time, try the Step Over button.
✓ Stepping over the Alarm method call should cause the “Alarm!” message to appear in the

Terminal pane, but the active line of code should jump back to the if vp.rxcheck... line.

DEVELOPMENT WITH THE PROPELLER ASSEMBLY DEBUGGER

PASD is a must if you plan on writing assembly code for your objects. Assembly language
is great for making high-performance versions of Spin objects, and it can also be used to
tackle certain tasks that the interpreted Spin language might not be fast enough for. An
example of the speed improvements that can be attained with assembly language is the
SimpleSerial Spin object’s top baud rate of 19.2 kbps compared to ViewPort’s conduit
object, which uses assembly language to support rates up to 2 Mbps.

Like ViewPort and the Parallax Serial Terminal, the PASD software relies on an object
(PASDebug.spin) running in another cog to send it information. The code being debugged
needs to declare the object and receive some slight modifi cations before it can be examined
with PASD. Here are the general steps for setting up an object for debugging with PASD:

■ Copy the test code and any objects it relies on into the same directory with the PASD
software and PASDebug object.

■ Verify that the object’s system clock settings are at least 5 MHz with an external
crystal. (The next example and the one included with PASD uses the same 80-MHz
system clock settings from the Parallax Serial Terminal and ViewPort examples.)

■ Comment any other code that might try to access the programming port (ViewPort,
Parallax Serial Terminal, etc.).

■ Add a declaration for the PASDebug object.

'{'
OBJ
 dbg : "PASDebug" '<--- Add for Debugger
'}'

■ After the cognew command that launches the assembly routine into a cog, add a call
to the PASDebug object’s Start method that passes the address where the assembly
code starts. (31 and 30 are the Propeller I/O pins used for COM port communication
through the Propeller programming tool.)

cognew(@entry, @m)
'{'
 dbg.start(31,30,@entry) 'debugger
'}'

■ At address 0 in the code, just after org and the entry point label, add the PASD
Debugger Kernel.

DAT
 org
'
' Entry
'
entry

'{'
' --------- Debugger Kernel add this at Entry (Addr 0) ---------
 long $34FC1202,$6CE81201,$83C120B,$8BC0E0A,$E87C0E03,$8BC0E0A
 long $EC7C0E05,$A0BC1207,$5C7C0003,$5C7C0003,$7FFC,$7FF8
' --
'}'

Note that each of these PASD additions starts with '{' and ends with '}'. Since, at the
time of this writing, the Propeller Tool software does not perform conditional compilations,

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 111

112 DEBUGGING CODE FOR MULTIPLE CORES

this saves time adding and removing the assembly debugging functionality. The left-
most apostrophes can be removed to comment out the debugging code, or added back
to uncomment them. For example, this code is not commented:

'{'
 dbg.start(31,30,@entry) 'debugger
'}'

Now, it’s commented:

{'
 dbg.start(31,30,@entry) 'debugger
}'

Also, an apostrophe following each brace makes it possible to use a couple of fi nd or
replace sessions to quickly uncomment and comment the debugger code.

TimeStamp Dev (ASM).spin is a test program for an assembly routine that performs
the same function as the TimerMs method in Timestamp Object.spin. In fact, the required
changes to substitute the assembly routine for the TimerMs method in the Timestamp
Object would be minimal. The cognew command would have to be modifi ed to launch
the assembly code, and the stack variable array could be removed since assembly lan-
guage does not require stack space in Main RAM that cogs executing Spin code use for
expression calculations, method parameters, return addresses, and return values.

" Timestamp Dev (ASM).spin
" Supplies minutes, seconds, milliseconds timestamp upon request.

CON ' Constant declarations

 _clkmode = xtal1 + pll16x ' System clock settings
 _xinfreq = 5_000_000

VAR ' Variable declarations

 long cog, m, s, ms, dt, semID ' Counting variables

OBJ ' Object declarations
'{'
 dbg : "PASDebug" '<--- Add for Debugger
'}'

PUB TestStart ' TestStart method

 m := 10 ' Initialize Spin Vars
 s := 59
 ms := 999
 dt := clkfreq/1000

 if not semID := locknew ' Check out a lock
 cognew(@entry, @m)
'{'
 dbg.start(31,30,@entry) '<--- Add for Debugger
'}'
 Repeat ' Keep cog running

DAT ' DAT block
 org ' ASM address reference
'
' Entry
'
entry

'{'
' --------- Debugger Kernel add this at Entry (Addr 0) ---------
 long $34FC1202,$6CE81201,$83C120B,$8BC0E0A,$E87C0E03,$8BC0E0A
 long $EC7C0E05,$A0BC1207,$5C7C0003,$5C7C0003,$7FFC,$7FF8
' --
'}'
 mov addr, par ' Copy par � addr
 rdlong _m, addr ' Copy m � _m
 add addr, #4 ' Point at next long
 rdlong _s, addr ' s � _s
 add addr, #4 ' Point at next long
 rdlong _ms, addr ' ms � _ms
 add addr, #4 ' Point at next long
 rdlong _dt, addr ' dt � _dt
 add addr, #4 ' Point at next long
 rdlong sID, addr ' semID � sID
 mov t, cnt ' Copy cnt � t
 add t, _dt ' Add _dt to t
timekeeper waitcnt t, _dt ' Wait for t+=dt
 add _ms, #1 ' _ms++
 cmp _ms, k wz ' if _ms==1000
 if_z mov _ms, #0 ' _ms:=0
 if_z add _s, #1 ' _s++
 cmp _s, #60 wz ' if _s==60
 if_z mov _s, #0 ' _s:=0
 if_z add _m, #1 ' _m++
 cmp _m, #60 wz ' if _m==60
 if_z mov _m, #0 ' _m:=0
:loop lockset sID wz ' if not lockset sID
 if_nz jmp #:loop
 mov addr, par ' Copy par � addr
 wrlong _m, addr ' Copy _m � m
 add addr, #4 ' Point at next long
 wrlong _s, addr ' Copy _s � s

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 113

114 DEBUGGING CODE FOR MULTIPLE CORES

 add addr, #4 ' Point at next long
 wrlong _ms, addr ' Copy _ms � ms
 lockclr sID ' Clear lock bit
 jmp #timekeeper ' Goto timekeeper
'
' Initialized data ' Cog RAM ASM vars
'
k long 1000 ' k := 1000
'
' Uninitialized data
'
_m res 1 ' More ASM variables
_s res 1
_ms res 1
_dt res 1
sID res 1
t res 1
addr res 1

The code between the Debugger Kernel and the timekeeper labels is responsible
for copying initial values from Main RAM to Cog RAM. One important fi rst test to
run on assembly code is to make sure these values have been copied correctly. To run
this test with PASD:

✓ Download PASD from www.insonix.ch/propeller/prop_pasd.html.
✓ Read the documentation and try the example code included in the download.
✓ Make sure that Timestamp Dev (ASM).spin is in the same folder with PASDebug.spin.
✓ Open Timestamp Dev (ASM) with the Propeller Tool software.
✓ If you don’t know which COM port the Propeller chip is connected to for program-

ming, press F7 in the Propeller Tool software and make a note of it.
✓ Run PASD.
✓ In PASD, click the COM menu and set the COM port to the Propeller chip’s program-

ming port.
✓ In PASD, click File and select Upload Code F11.

F11 VERSUS F2 IN PASD

File → Upload Code F11 in PASD loads the code into the Propeller chip and copies
the ASM code to PASD. In contrast, Get ASM Code F2 just copies the ASM code
over. It can be used if you manually uploaded the code with the Propeller Tool using
either F10 or F11. You can then just use F2 in PASD to make a copy of the ASM
code since it has already been loaded into the Propeller Chip. Each time you make
a change to the ASM code with the Propeller Tool, make sure to load the modifi ed
code into the Propeller chip and get the latest copy into PASD, either with F11 from
PASD or a combination of F10 or F11 in the Propeller Tool and F2 in PASD.

www.insonix.ch/propeller/prop_pasd.html

PASD then fi nds the Propeller Tool software, loads its code into the Propeller, makes
a copy of the assembly language code, and loads it into PASD. When PASD reappears
in the foreground, the address to the left of the fi rst assembly instruction at Addr 00C
near the upper-left corner of Fig. 3-24 should be highlighted.

✓ Use the Debug menu to open the Main RAM, Cog RAM, and Pin viewers.
✓ In the Main RAM viewer, select $L dec to display the long value stored at each

address as hexadecimal and then as decimal.
✓ In the Cog RAM Viewer, scroll to Addr 02C. It should show the label k. You may

also need to make the Value column wider to see the decimal equivalent to the right
of its hexadecimal value.

✓ In the PASD window, select the check box to the left of the timekeeper label (Addr
018) to set a breakpoint there.

✓ Click the Debug menu and select Run F5.

The highlighting should advance from Addr 00C to Addr 018, indicating that the
code ran until it stopped at the breakpoint.

✓ Arrange the windows as shown in Fig. 3-24.

DEBUGGING TOOLS APPLIED TO A MULTIPROCESSING PROBLEM 115

 Figure 3-24 PASD assembly debugging session.

116 DEBUGGING CODE FOR MULTIPLE CORES

The assembly code between the Debugger Kernel and timekeeper label copies the
contents of the m, s, and ms Spin variables in Main RAM to Cog RAM registers named
_m, _s, and _ms. PASD lets you examine both the Propeller chip’s Main RAM and Cog
RAM to make sure the values were copied correctly. The command cognew(@entry, @m)
launches the assembly code starting at the entry label into a new cog, and the address
of the Spin variable m is passed to the cog’s parameter register. The assembly language
keyword for this register is par. The Main RAM viewer automatically starts displaying
Main RAM from the par address. Notice that the initial values of 10, 59, and 999 are
the fi rst three values in the viewer. These correspond to the values that were loaded into
the Timestamp Dev (ASM) object’s global m, s, and ms Spin variables. Down in the Cog
RAM viewer, the second line from the top shows that _m stores the value 10, and the
third and fourth lines from the top show that _s and _ms store 59 and 999, respectively.
So the assembly code passed the initialization test.

The PASD software’s Debug menu also has Run, Stop, Step, Step over, and Set
address for navigating your code while debugging. This software is a truly an invalu-
able tool for debugging Propeller assembly language code. For the price of a small
download, this software can help save signifi cant amounts of development time.

Summary
This chapter focused on debugging code for multiple cogs. The best form of debug-
ging is bug prevention. Parallax addressed bug prevention well in the Propeller chip’s
design by providing features in the chip’s architecture and programming languages
that prevent many multiprocessing bugs. Utilizing objects to manage code that runs in
other cogs is also an important way to prevent bugs. Prewritten objects that perform
many common tasks are available from http://obex.parallax.com and advice on how to
incorporate them into applications is also readily available from the Propeller forum at
http://forums.parallax.com. Building block objects with code that runs in more than one
cog follow a set of conventions for including Start and Stop methods to launch and shut
down code that runs in another cog, along with any methods needed for confi guration
or information exchange between cogs.

One of the most common root causes of multiprocessing bugs is our natural tendency
to forget that different segments of code are executed by different processors. Other
common bugs relate to I/O and timing. For I/O, the most common bug is forgetting to
add I/O assignments at the start of a method that gets launched into a new cog. If code
in a cog is working with certain I/O pins, the method that gets launched into a new cog
should initialize the I/O pin settings. Three common coding errors related to timing
include forgetting to declare the clock settings, using waitcnt(delay+cnt) instead of
synchronized delays with t:=cnt...waitcnt(t+=delay), and writing code in a loop
that takes longer than the synchronized waitcnt delay.

Although contention over an individual memory element is impossible with the
Propeller chip, thanks to the fact that its Hub gives each cog main memory access in
a round-robin fashion, two different processors accessing a group of longs during the

http://obex.parallax.com
http://forums.parallax.com

same time can still result in corrupted data. This typically happens when one cog is
partially done updating a group of values that another cog is reading. The cog doing
the reading might read two new values and one old value, for example. The Propeller
has built-in memory semaphore bits, called locks, that can be incorporated into code
to prevent these memory collisions. Other common memory bugs include forgetting to
use the @ operator to pass an address of a variable to a method instead of its value. For
Spin methods that get launched into new cogs, make sure to allocate enough stack space
for them, because another common bug happens when a method running in another cog
doesn’t have enough stack for all the calculations it needs to do.

 Liberal use of debugging tools with each step of application development will help
keep bugs out and reduce overall development time. The TV_Terminal object can be
used to display messages from the Propeller chip as well as to test certain demonstration
objects posted to the Parallax Object Exchange. The Parallax Serial Terminal software
and its accompanying object are also excellent for simple tests, and the PST Debug
LITE object can further automate some of the debugging tasks. ViewPort provides an
IDE-style debugger along with graphical analysis tools for debugging, testing, and veri-
fi cation. For assembly language debugging, the PASD is a must. All of these software
packages make use of objects that reside in one of the Propeller microcontroller’s cogs
and communicate with PC software to provide variable information and status.

Remember that if you run into a bug that’s a real brain teaser, check back with the
list at the start of the “Common Multiprocessor Coding Mistakes” section. Also, keep
in mind that different segments of code in a multicore application are executed simul-
taneously. This will help prevent bugs as well as make the ones that do appear in your
code easier to spot.

Exercises
1 Incorporate the ASM timestamp code into a building block object.
2 Design a full timekeeping object.
3 Expand the Keyboard_Demo object so that it allows you to enter numeric values that

can be placed into variables. Hint: Save time by borrowing and modifying DecIn
code from the Parallax Serial Terminal object.

EXERCISES 117

This page intentionally left blank

119

4
SENSOR BASICS AND MULTICORE

SENSOR EXAMPLES

Andy Lindsay

Introducing Sensors by Their
Microcontroller Interfaces
The Propeller microcontroller’s multicore architecture greatly simplifi es getting infor-
mation from many sensors and sensor arrays. The techniques for monitoring run-of-
the-mill sensors like switches and resistive elements with the Propeller are similar to
those used with most microcontrollers. However, thornier problems such as collecting
measurements in parallel can be overcome with programs that make different cores
(cogs) monitor different sensors or arrays of sensors. Other cogs can also be pro-
grammed to process and store the sensor measurements, and, in most designs, there
will still be cogs left over for communication, display, and other application-specifi c
tasks.

This chapter breaks sensors down into their most common microcontroller inter-
faces and then demonstrates how to measure an example sensor from each interface.
With this approach, the chapter introduces a wide variety of sensors with just a few
examples. For instance, a photoresistor is a sensor whose resistance varies with light.
This light sensor can be replaced easily with sensors whose resistances vary with other
quantities, such as rotation, salinity, temperature, or surface refl ectivity. These four
examples are still just the fi rst few entries in a long list of resistive sensors. It turns out
that the list gets even longer because the same circuit that is used to measure resistive
sensors can also be used to measure capacitive sensors, and the technique used to mea-
sure those sensors also applies to certain diode, transistor, and conductivity sensors.
So, the simple light sensor really represents an entire class of resistive, capacitive, and
other sensors that can be used to measure a wide variety of physical quantities. With

120 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

that in mind, here is a list of the common microcontroller/sensor interfaces introduced
in this chapter:

■ On/off
■ Resistive, capacitive, diode, transistor, and other
■ Pulse and duty cycle outputs
■ Frequency outputs
■ Voltage outputs
■ Synchronous serial
■ Asynchronous serial

To further simplify sensor measurements, the Propeller Object Exchange web site
(obex.parallax.com) shown in Fig. 4-1 has prewritten objects for many sensors that can
serve as “building blocks” for an application. These building block objects can take care

 Figure 4-1 Propeller Object Exchange.

of many diffi cult programming tasks. They can also boil down sensor monitoring to a
simple method call that returns the measurement, or, in some cases, a Start method
call that arranges for an object to keep one or more variables in an application updated
with the latest measurement(s).

Sensor-intensive applications tend to examine measurements and react to them on-
the-fl y or store them for later analysis, or sometimes both. Figure 4-2 shows examples
of audio-spectrum analysis and a prototyping adapter for SD card data storage. These
are two examples that address processing and storage included in this chapter. The
treatment of processing and storage is not covered in depth here because examples will
be plentiful in the project-oriented chapters that follow.

Audio Spectrum Analyzer

500 1000
10 Hz Sweep Steps

1500

 Figure 4-2 Audio signal frequency analysis and SD card adapter.

INTRODUCING SENSORS BY THEIR MICROCONTROLLER INTERFACES 121

122 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

The examples in this chapter provide some basics on how a variety of sensors work,
how the Propeller microcontroller interacts with different sensors to get measurements,
and how to write programs that orchestrate the microcontroller’s interactions with the
sensors. Wherever possible, pointers to more information are included. In general,
www.parallax.com has a page for any given sensor that Parallax manufactures or dis-
tributes, and the fi rst place to look for more information about a given sensor would be
in the Downloads section on the sensor’s product page.

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_04.

On/Off Sensors
On/off sensors send high or low signals, depending on whether a certain physical prop-
erty was detected. The most common on/off sensors are pushbuttons and switches; other
examples include infrared and beam-break detectors. Many more sophisticated sensor
modules include an onboard microcontroller and/or onboard electronics to provide an
on/off output for reduced prototyping effort at a higher price. Examples of this kind of
sensor include the Parallax passive infrared (PIR) sensor for motion detection, sound
level sensors, and gas sensors such as carbon monoxide, methane, and Propane gas.
Figure 4-3 shows examples of some of these sensors, including the pushbutton switches,
PIR, and carbon monoxide sensors.

Tip: With some extra work, or in some cases with an object from the Propeller
Object Exchange, the raw sensor mounted on the PCB-based modules can be
monitored directly by the Propeller chip.

PUSHBUTTONS

Figure 4-4 shows two example pushbutton contact sensor circuits, one with a pull-
up resistor, and the other with a pull-down resistor. When a Propeller I/O pin is set
to input, pressing the button in the circuit on the left causes a cog’s ina register to store
a binary-1 in the bit that holds that I/O pin’s input state. For example, if a pushbutton
circuit is connected to P21, ina[21] would return a 1 if the button is pressed or a 0 if
it is released. The circuit on the right will result in the opposite values: 1 if released,
0 if pressed.

Caution: Always include that pull-up or pull-down resistor; do not leave it out.
If the pull-up or pull-down resistor is left out, the I/O pin becomes an antenna
when the button is not pressed. So the binary-1/0 result would depend on nearby
electric fi elds or, in some cases, nearby I/O pin states, which can fl uctuate. In
other words, without the pull-up or pull-down resistors, there’s no telling what the
I/O pin will detect when the button is not pressed. This is why pull-up and pull-
down resistors are incorporated into circuits involving electrical contact.

www.parallax.com

 Figure 4-3 Examples of sensors with on/off outputs.

When the button on the left side of Fig. 4-4, is pressed, the I/O pin detects the short
circuit to the 3.3 V connection and causes the input register bit for that pin to store a 1.
When the button is released, the I/O pin detects ground = 0 V through the 10 kΩ
resistor. The resistor “pulls down” the voltage to 0 V when the button is not pressed,
and thus the name pull-down resistor.

ON/OFF SENSORS 123

124 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

On/Off Sensor Example: Single Pushbutton Figure 4-5 shows a single pushbut-
ton connected to Propeller I/O pin P16 on the Propeller Education Kit platform, also
known as the PE platform. This pushbutton circuit utilizes a pull-down resistor to keep
the voltage applied to the I/O pin at ground when the button is not pressed, and when
it gets pressed, the pushbutton connects the I/O pin to 3.3 V.

 Figure 4-4 Pushbutton circuits with pull-down and
pull-up resistors.

 Figure 4-5 Single pushbutton.

Information: For explanations of how to build circuits in breadboards, download
“What’s a Microcontroller?” from www.parallax.com. For more information about
the PE Kit, PE Platform, and PE Kit Labs textbook, type “Propeller Education” into
the Search fi eld at www.parallax.com, and then click the Go button.

The P16 Input States.spin object displays the state of I/O pin P16 in the
Parallax Serial Terminal. When the pushbutton is pressed, the terminal should dis-
play “ina[16] = = 1”; and when it’s not pressed, the terminal should instead display
“ina[16] = = 0.” The state of the incoming on/off signal is stored in bit 16 of the cog’s
ina register, which is ina[16]. When the pushbutton is pressed, ina[16] returns 1
because the pushbutton circuit applies 3.3 V to I/O pin P16. When the button is not
pressed, ina[16] returns 0 because the pushbutton applies 0 V to the I/O pin through
the pull-down resistor.

" P16 Input States.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 pst : "Parallax Serial Terminal" ' Serial communication object

PUB Go

 pst.Start(115200) ' Start Parallax Serial Terminal

 repeat
 pst.Str(String(pst#HM, "ina[16] == "))
 pst.Bin(ina[16], 1) ' Display 1 binary digit
 waitcnt(clkfreq/20 + cnt) ' Wait 1/20 second

Figure 4-6 shows the Parallax Serial Terminal display while the pushbutton is not
pressed. Of course, when the pushbutton is pressed, the display will instead read
“ina[16] = 1.” Assuming you have already tried programs in earlier chapters, you
now know the steps for loading a program into the Propeller chip and displaying
messages from the Propeller chip in the Parallax Serial Terminal. To test P16 Input
States.spin, follow these steps:

✓ Use the Propeller Tool software to load the application into the Propeller chip.
✓ Click the Parallax Serial Terminal’s Enable button.
✓ Watch the display as you press and release the pushbutton, and verify that it displays

the correct binary values stored by ina[16] for the pressed and released button
states.

ON/OFF SENSORS 125

www.parallax.com
www.parallax.com

126 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

Keep in mind that the pushbutton is just one example of an on/off sensor. Also keep
in mind that once the code has acquired that 1 or 0 measurement, it’s up to the applica-
tion designer to decide what to do with the information and write code to make it so.
The Spin language has lots of fl exibility. Pushbutton Decisions.spin shows a simple
next step that calls different methods, depending on whether the sensor is sending the
on/off signal. In Fig. 4-5, the pushbutton is the circuit sending those signals, but again,
some completely different sensor could be sending on/off signals. While the program’s
Pressed and NotPressed methods just display some simple messages, an application
might instead acquire a timestamp, move an actuator, update a display, start a mecha-
tronic calibration sequence, sound an alarm, make a phone call, or maybe all of the
above. With the Propeller microcontroller, all the tasks might even be performed in
parallel by separate cogs.

" Pushbutton Decisions.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 pst : "Parallax Serial Terminal" ' Serial communication object

PUB Go

 pst.Start(115200) ' Start Parallax Serial Terminal

 Figure 4-6 P16 input state display.

 repeat
 pst.Str(String(pst#HM, "ina[16] == "))
 pst.Bin(ina[16], 1) ' Display 1 binary digit
 waitcnt(clkfreq/20 + cnt) ' Wait 1/20 second
 if(ina[16] == 1) ' If ina[16] stores 1
 Pressed ' call pressed method
 else ' otherwise
 NotPressed ' call NotPressed method

PUB Pressed

 pst.Str(String(pst#NL, "Button pressed!", pst#CE))

PUB NotPressed

 pst.Str(String(pst#NL, "Button not pressed.", pst#CE))

On/Off Sensor Example: Pushbutton Array Figure 4-7 shows a pushbutton
array that includes two additional copies of the P16 pushbutton circuit. These copies
are connected to adjacent I/O pins P17 and P18. This provides a small example of an
on/off sensor array.

The Spin language has a simple feature to check multiple inputs on any range of con-
tiguous I/O pins in a port. Instead of ina[16], which would just return the state of P16,
an application can use ina[18..16] to check all three pushbuttons with one command.
Ina[18..16] returns a three-digit binary number, with each digit indicating the state
of one of the pins. For example, if the P18 and P16 pins were pressed, ina[18..16]
would return %101. If the P18 and P17 I/O pins were pressed instead, ina[18..16]
would return %110. Or, if just P16 were pressed, it would return %001.

✓ Build the circuit shown in Fig. 4-7.
✓ Load P18 to P16 Input States.spin into the Propeller chip.
✓ Test the pushbuttons by displaying their states with the Parallax Serial Terminal.

 Figure 4-7 Pushbutton example of an on/off sensor array.

ON/OFF SENSORS 127

128 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

" P18 to P16 Input States.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.

 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 pst : "Parallax Serial Terminal" ' Serial communication object

PUB Go

 pst.Start(115200) ' Start Parallax Serial Terminal

 repeat

 pst.Str(String(pst#HM, "ina[18..16] == %"))
 pst.Bin(ina[18..16], 3) ' Display 3 binary digits

 waitcnt(clkfreq/20 + cnt) ' Wait 1/20 second

With three pushbuttons controlling three different binary digits, there are now 23

different combinations of binary results, from %000 to %111, which is decimal 0 to
7. Case statements can be useful for picking out certain conditions. For example, the
case statement in the object P18 to P16 Input Decisions.spin fi rst stores the value of
ina[18..16] in a local variable named states. Later, in the Go method, a case state-
ment checks if the P18 pushbutton has been pressed. The fi rst condition the case state-
ment checks for is %100..%111. This is all the values from %100 to %111, or decimal
4 to 7, which includes %100, %101, %110, and %111. If any of those conditions is
true, the TopButton method gets called. Upon return, a waitcnt command executes, and
then, the loop repeats. The case statement does not continue down through the other
conditions; after the fi rst true condition is detected, the code executes commands in the
case block and then exits the case statement. Also, case statement conditions do not
necessarily have to contain single-method calls. The other condition in the case state-
ment has a code block with two method calls, though it could also contain expressions,
commands, and so on.

✓ Test P18 to P16 Input Decisions.spin with the Parallax Serial Terminal.

' P18 to P16 Input Decisions.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.

 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 pst : "Parallax Serial Terminal" ' Serial communication object
PUB Go | states

 pst.Start(115200) ' Start Parallax Serial Terminal

 repeat
 states := ina[18..16]
 pst.Str(String(pst#HM, "ina[18..16] == %"))
 pst.Bin(states, 3) ' Display 3 binary digits
 case states ' Evaluate case by case
 %100..%111: TopButton ' Method calls for buttons
 %010..%011: MiddleButton
 %001 : BottomButton
 other : ' Otherwise, clear line
 pst.Newline
 pst.ClearEnd

 waitcnt(clkfreq/20 + cnt) ' Wait 1/20 second

PUB TopButton
 pst.Str(String(pst#NL, "Emergency, top button is pressed!", pst#CE))

PUB MiddleButton
 pst.Str(String(pst#NL, "Warning, middle button is pressed!", pst#CE))

PUB BottomButton
 pst.Str(String(pst#NL, "Note, bottom button is pressed.", pst#CE))

MULTIPROCESSING EXAMPLE

With objects that take care of the multiprocessing grunt work, multicore application code
becomes exceedingly simple. Consider P16 Multiprocessing Example.spin. If it weren’t
for the convention that a call to an object’s Start methods results in one or more launched
cogs, it would be diffi cult to tell that this program is making use of three cogs. The top
object executes in one cog, and both the PST Debug LITE and Timestamp objects have
code that other cogs execute. Since the two building block objects have methods that take
care of information exchanges with the code running in the other cogs, P16 Multiprocessing
Example.spin just looks like it’s a single loop that makes a few method calls.

" P16 Multiprocessing Example.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

ON/OFF SENSORS 129

130 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

OBJ

 debug : "PST Debug LITE" ' Serial communication object
 time : "TimeStamp Object" ' TimeStamp object
PUB Go | minutes, seconds, milliseconds

 debug.Style(debug#COMMA_DELIMITED)' Configure debug display
 debug.Start(115200) ' Start Parallax Serial Terminal
 time.Start(0, 0, 0) ' Start timestamp cog

 repeat ' Main loop
 debug.Str(String("ina[16] == "))
 debug.Bin(ina[16], 1) ' Display 1 binary digit
 debug.NewLine ' New line
 if ina[16] == 1 ' If button pressed
 time.GetTime(@minutes) ' Get timestamp & display
 debug.Vars(@minutes, String("| minutes, seconds, milliseconds"))
 waitcnt(clkfreq/20 + cnt) ' Wait 1/20 second
 debug.Position(0, 4)

Figure 4-8 shows the Parallax Serial Terminal display, which gives the most recent value
from the Timestamp object after a button press. Note that it also displays the state of P16 in
the same way that the P16 Input States.spin object did. The P16 Multiprocessing Example
object used the PST Debug LITE object instead of the Parallax Serial Terminal object to
simplify displaying the list of time variables. Since the PST Debug LITE object is just the
Parallax Serial Terminal object with some extra features, all of the Parallax Serial Terminal

 Figure 4-8 Customized PST Debug LITE display.

methods are still available to the application. The application uses debug.Position to place
the cursor at zero spaces over and four spaces down between each repetition of the loop.
Along with the .str method call that displays “ina[16] = = ,” this application demonstrates
how one of the PST Debug LITE’s display modes can be customized for different debugging
tasks. As an aside, removing the debug.Style method call could be more benefi cial here
since it would then display the I/O pin direction and states along with the variable values.

CONVERTING ANALOG SENSORS TO ON/OFF SENSORS

Many analog sensors can be incorporated into circuits that behave as on/off sensors by
virtue of the fact that Propeller microcontroller I/O pins have a 1.65 V input threshold
voltage. Provided the voltage applied to an I/O pin set to input is in the 0 to 3.3 V range,
a cog interprets voltages above 1.65 V as binary-1 and voltages below 1.65 V as binary-0.
For example, the voltage output at the potentiometer’s W terminal in Fig. 4-9 varies
from 0 to 3.3 V as the knob is turned. Half of its range of motion will result in voltages
above 1.65 V and the other in voltages below 1.65 V. So, as the potentiometer’s knob
is turned from one end of its range to the other, the voltage at its W terminal will pass
the 1.65 V threshold at about the halfway point, and the Propeller can detect this as a
change from 0 to 1 or in the other direction from 1 to 0.

✓ Test the circuit shown in Fig. 4-9 with P18 to P16 Input States.spin. Keep an eye on
the middle of the three binary digits; it’s the one that displays the state of P17.

 Figure 4-9 Potentiometer in an on/off circuit.

ON/OFF SENSORS 131

132 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

A photoresistor’s resistance varies with light intensity on its cadmium sulfi de ele-
ment. This analog sensor can be converted to a digital sensor for the Propeller chip by
placing it in series with a fi xed-value resistor and then connecting the node between
the two resistors to an I/O pin, as shown in Fig. 4-10. As the light levels change, the
photoresistor’s resistance changes and the voltage between the photoresistor and the
fi xed resistor in Fig. 4-10 also changes. For that particular circuit, brighter light levels
reduce the photoresistor’s resistance, which in turn makes the voltage between the
two resistors increase. Dimmer light levels cause an increase in the photoresistor’s
resistance, so the voltage between two resistors decreases. To set the threshold, simply
measure the resistance of the photoresistor at the light level that should cause the
circuit’s output to be 1.65 V, and then pick a fi xed resistor of the same value. For
example, if the photoresistor’s resistance is measured at 10 kΩ, with the light level
applied that should cause the transition, the fi xed resistor should also be 10 kΩ.
Reason being, the voltage between two equal resistors in series is half the voltage
applied across both of them. Since 3.3 V is applied across both resistors, the voltage
between them when they are equal will be 1.65 V, which is the Propeller chip’s I/O
pin threshold voltage.

 Figure 4-10 Photoresistor as an on/off circuit.

Information: The Cadmium Sulfi de (CdS) cell or photoresistor was one of
the most common ambient light sensors built into devices. With the advent of
the European Union’s Restriction of use of certain Hazardous Substances (RoHS)
directive, cadmium sulfi de photoresistors can no longer be built into devices
imported into or manufactured in Europe. This has given rise to a number of
photoresistor replacement products, including certain phototransistors and linear
light sensors. Many of these devices are designed to be drop in replacements for
photoresistors, making it possible for manufactures to comply with RoHS without
redesigning all their circuit boards to accommodate new parts and circuits.

ON/OFF SENSORS THAT DEPEND ON SIGNALING

Some on/off sensors require special signals to make them work properly. One example is
the Parallax CO sensor, which has a control pin that requires a sequence of high/low volt-
age levels for reliable readings from its alarm pin. Another example, shown in Fig. 4-11, is
an infrared object detection circuit. The tube on the right houses an infrared light emitting
diode (IR LED) like the ones found in common TV remotes, and the sensor on the left is
a PNA4602 infrared sensor, which can be found in many TV sets and other entertainment
system components. If this sensor detects infrared fl ashing on/off in the 38 kHz range, it
sends a low signal; otherwise, it sends a high signal. In the circuit in Fig. 4-11, it sends a low
signal if the infrared light is refl ected by a nearby object; otherwise, it sends a high signal.

It might seem like another cog would be required for sending the 38 kHz signal, but
that’s not the case. Each of the Propeller microcontroller’s eight cogs has two counter

 Figure 4-11 Infrared object detector.

ON/OFF SENSORS 133

134 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

modules. A counter module is a confi gurable state machine that’s capable of performing
a variety of tasks independently for its cog. One of those tasks is square wave generation,
and counters are capable of generating frequencies that range from 0 Hz to 128 MHz.

Information: Other examples of independent tasks that counter modules
can perform include pulse generation, pulse and decay measurement, and duty
modulation for digital to analog (D/A) conversion, and that’s still just scratching the
surface. For more information about counter modules, get the Propeller Education
Kit Labs: Fundamentals PDF textbook from www.parallax.com, and consult the
Counter Modules and Circuit Applications lab. Additionally, an extensive list
of links to counter module documentation and applications for the Propeller is
available from http://www.parallax.com/go/counters.

The Propeller Education Kit Labs: Fundamentals book and the PE Kit Tools
section in Propeller Forum’s Propeller Education Kit Labs sticky-thread make use of
an object named SquareWave as a tool for generating square waves utilizing a cog’s
counter modules. SquareWave is similar to the Synth object in the Propeller Library,
and both SquareWave and Synth were developed from example code from the Propeller
Library’s CTR.spin object. Instead of launching another cog, these objects confi gure a
counter module to generate the square wave in the background so that the cog’s code
can move on to other tasks in the foreground.

The Test IR Detect.spin application uses the SquareWave object to transmit the
38 kHz square wave signal to the IR LED circuit connected to P2. The SquareWave
object does not have a Start method since it’s not launching a process into another cog.
So, the main loop calls the SquareWave object’s Freq method and passes it I/O pin 2,
channel 0, and a frequency of 38,000 Hz. The Freq method’s channel parameter can
be either 1 or 0 because each cog has two counter modules: A and B. The SquareWave
object’s Freq method expects a channel parameter of 0 to select counter module A, or
1 to select counter module B. This example selects counter module A to generate the
38 kHz square wave, but it could just as easily have selected counter B with a channel
argument of 1. After transmitting the 38 kHz signal for 1 ms, the code copies the state of
ina[5] to a variable named detect. Before displaying the detect variable’s value and
repeating the loop, the application code makes a second call to the SquareWave object’s
Freq method, passing a frequency of 0 Hz to stop the 38 kHz signal to the IRLED.

'Test IR Detect.spin
CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 pst : "Parallax Serial Terminal" ' Serial communication object
 sqw : "SquareWave" ' Square wave object

www.parallax.com
http://www.parallax.com/go/counters

PUB go | detect

 pst.Start(115200) ' Start Parallax Serial Terminal

 repeat
 sqw.Freq(2, 0, 38000) ' P2 IR LED flicker at 38 kHz
 waitcnt(clkfreq/100 + cnt) ' Wait 10 ms
 detect := ina[5] ' Check IR receiver
 sqw.Freq(2, 0, 0) ' Turn off IR LED

 ' Cursor home, display label, detector state, clear to end of line.
 pst.Str(String(pst#HM, "IR Detector = "))
 pst.Dec(detect)
 pst.ClearEnd

Information: This example is an adaptation of Test IR Detect.spin in PE Kit
Tools: Transmit Square Wave Frequencies. This post is part of the PE Kit Tools
series, published in the Propeller Education Kit Labs sticky-thread in the Propeller
forum at http://forums.parallax.com.

The IR receiver is an active-low device, meaning it sends a low signal to indicate
that it is receiving a 38 kHz infrared signal, or a high signal to indicate that it is not
receiving the signal. To test this program and circuit:

✓ Build the IR LED + Detector circuit shown in Fig. 4-11.
✓ Load Test IR Detect.spin into the Propeller chip.
✓ Enable the Parallax Serial Terminal.
✓ Verify that the Parallax Serial Terminal displays IR Detector = 1 when an object is

not detected (Fig. 4-12) and IR Detector = 0 when an object is detected.

 Figure 4-12 Object not detected.

ON/OFF SENSORS 135

http://forums.parallax.com

136 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

SENSORS WITH OUTPUTS GREATER THAN 3.3 V

Sensors that transmit voltages outside the 0 to 3.3 V range should never be connected
directly to a Propeller I/O pin. Lots of circuits are available for making a sensor’s higher
voltage level output compatible with the Propeller chip’s 3.3 V input. Some examples
of circuits to protect a Propeller I/O pin from higher voltage signal levels include series
resistor circuits, transistor circuits, level translator integrated circuits (ICs), optoisola-
tors, and solid state relays.

Series resistors are the quickest and easiest solution, especially for prototyping.
Fig. 4-13 shows an example of a 3.9 kΩ resistor in series between a 5 V sensor output
and a 3.3 V Propeller I/O pin. This circuit provides adequate protection, and a 10 kΩ
resistor would also be fi ne for most applications. Note that the 5 V output infrared
detector in Fig. 4-11 has a 10 kΩ resistor between its output and the I/O pin to provide
this protection.

The reason a series resistor suffi ces is because Propeller I/O pins have protection
diodes that drain current to the Propeller chip’s positive supply if an incoming signal is
above 3.3 V, or to ground if an incoming signal is less than 0 V. Assuming an incom-
ing 5 V signal through a 3.9 kΩ series resistor, there will be a 1.25 V drop across the
series resistor and a 0.45 V drop across the built-in protection diode, as the 3.3 V supply
absorbs the current (Voltage drop values are approximate and will vary slightly). The
resulting voltage applied to the I/O pin is 3.75 V, which is still safe for the I/O pin,
provided the current into the diode is under the 500 µA limit specifi ed in the Propeller
Datasheet. Using voltage = current · resistance, or V = IR, with V = 1.25 V and R =
3.9 kΩ, the current through the resistor (and the diode) will be about 321 µA, which is
well under 500 µA limit.

Note: Although the Propeller Datasheet specifi es 3.6 V as the absolute
maximum allowable voltage applied to an I/O pin, that value assumes no series
resistance. With series resistance, it’s the protection diode’s job to make sure the
I/O pin can tolerate the applied voltage.

If a sensor is adversely affected by the current load resistor protection puts on its
output, Fig. 4-14 shows a simple level-translator circuit that draws no current thanks
to that fact that its input is the gate (G) terminal of a MOSFET (metal oxide semicon-
ductor fi eld effect transistor). The fi rst transistor’s drain terminal is pulled up to Vcc,
the supply for the higher voltage system, with a 10 kΩ resistor. The second transistor’s
drain (D) terminal is pulled up to the 3.3 V supply, so the highest voltage it will send
to the I/O pin is 3.3 V. Each of these transistors inverts the signal. Since the two are
cascaded, the signal is inverted twice, and the signal at the I/O pin is the 3.3 V version

 Figure 4-13 Protect an I/O pin with a
series resistor.

of the input signal V(Vcc). In other words, if V(Vcc) is high—6 V, for example—the
voltage at the I/O pin will be 3.3 V. On the other hand, if V(Vcc) is low—0 V, the voltage
at the I/O pin will be 0 V.

Other interfaces for higher voltages include level-translator ICs, optoisolators, and
solid-state relays. Level-translator ICs are sometimes referred to as level shifters, and
they provide voltage translation in a single chip. Some level translators boast extra
protection circuitry, as well as maximum switching speeds that are signifi cantly faster
than the circuit in Fig. 4-14, which is only good for switching speeds up to 20 or so
kHz. Optoisolators also come in IC packages, and they provide the I/O pin with a high
degree of protection because the high and low signals are transmitted optically instead
of electrically. With an optoisolator, the sensor’s output gets connected to an infrared
LED that’s inside a small enclosure. If the sensor sends a high signal, the infrared LED
emits light. The infrared LED is right next to an infrared transistor in the enclosure with
a pull-up resistor that is connected to the lower voltage system’s supply. So the transistor’s
output will pass either 3.3 or 0 V to the Propeller I/O pin, depending on whether the
sensor’s output turned the LED on or off. Since an optoisolator circuit uses light to
carry the signal, the two systems can be kept electrically separate, not even requiring a
common ground. Solid-state relays (SSRs) are designed to either pass a signal from a
higher voltage system to a lower voltage system, or take a signal from a lower voltage
system to control a higher voltage system. One of the low-voltage options is 3.3 V; some
of the more common higher voltage options include 12 or 24 VDC, 110 or 220 VAC.

Resistive, Capacitive, Diode, Transistor,
and Other
This category features lots of different analog sensors that can all be measured with the
same technique, commonly referred to as RC decay or RC time measurement. The list
of different sensors that can be measured with this technique is extensive. For example,

 Figure 4-14 Level shifter with two FET transistors.

RESISTIVE, CAPACITIVE, DIODE, TRANSISTOR, AND OTHER 137

138 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

three common resistive sensors are the photoresistor, potentiometer, and thermocouple.
The photoresistor’s resistance varies with light level. The potentiometer’s resistance
varies with the position of its adjusting knob or screw, and the thermocouple’s resistance
varies with temperature. You can fi nd devices for many different physical properties,
including gas concentration, force, humidity, temperature, fl uid level, and salinity, and
that’s still just a sampling of the myriad of resistive sensors available. Examples of
capacitive sensors include another type of humidity sensor, as well as touchpad and
displacement sensors. Photodiodes and phototransistors are also compatible with this
technique and tend to be selective for particular colors of light, and some are available
with optical fi lters to make them even more selective.

HOW RC DECAY MEASUREMENTS WORK

RC decay circuits have resistive (R) and capacitive (C) elements connected in parallel to
an I/O pin. If the R element is a variable sensor, the C element has to be a fi xed value.
Conversely, if the C element is a variable sensor, the R element has to be a fi xed value.
The example in Fig. 4-15 uses a variable resistor, which means the resistive element
is the sensor and the capacitor is a fi xed value. Figure 4-15 also shows the interaction
between the Propeller I/O pin and the RC circuit. On the left, the I/O pin charges up
the capacitor, which behaves like a small battery, to 3.3 V by transmitting a high signal.
Then, in the middle of Fig. 4-15, the code changes the I/O pin to input. From the circuit’s
point of view, its voltage source just disappeared, because when an I/O pin is an input,
its high-input impedance makes it invisible to most circuits. Even though the I/O pin is
invisible to the circuit, the circuit’s voltage is visible to the I/O pin, so it can still monitor

 Figure 4-15 Propeller RC decay measurement. (Excerpt from Propeller Education Kit Labs: Fundamentals)

and detect when the voltage decays below the I/O pin’s 1.65 V input threshold. Since a
cog, or even a cog’s counter module, can also measure the time between when the I/O
pin was changed from output-high to input and when the voltage decayed below the
I/O pin’s 1.65 V threshold, it can capture that ∆t needed to calculate the sensor’s resis-
tance or capacitance. More importantly, since the sensor’s resistance or capacitance
varies with some physical property, the microcontroller can determine the physical
quantity the resistive or capacitive sensor measures by measuring the decay time.

RC decay is short for resistor capacitor decay, and it relies on the fact that the time it
takes a capacitor to discharge through a resistor to half of its starting voltage is:

∆t = 0.693 · C · R

If C is a fi xed value and R is a resistive sensor, the value of R is:

R = ∆t/(0.693 · C)

Likewise, if R is fi xed and C is variable, C = ∆t/(0.963 · R)
In either case, so long as one value is fi xed, a decay time measurement can be used

to determine the other value.

RC DECAY EXAMPLE: MEASURE A POTENTIOMETER’S POSITION

The Test Simple RC Time.spin application interacts with the circuit in Fig. 4-16 to
display a number that indicates the potentiometer’s position based on the measurement
of its variable resistance. In the previous section, the potentiometer was in a circuit that
caused it to provide the Propeller I/O pin with a variable voltage source. In this circuit,

 Figure 4-16 RC decay test circuit.

RESISTIVE, CAPACITIVE, DIODE, TRANSISTOR, AND OTHER 139

140 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

it is instead connected as a variable resistor with the A terminal disconnected, which
is commonly referred to as fl oating. As the knob gets turned, the wiper (W) terminal’s
contact with the resistive element inside the potentiometer moves along its length. When
the knob is turned in one direction, the contact point will get closer to the A terminal and
the resistance between B and W will get larger. In the other direction, the contact point
will get closer to the B terminal, and the resistance between W and B decreases.

The test application for measuring this circuit utilizes an object named RC Time,
which comes from the PE Kit Tools: Measure Resistance and Capacitance post in the
Propeller forum. The article in this post demonstrates many uses and applications of
the RC Time object, which can be confi gured to take sequential measurements in the
same cog or parallel measurements in one or more other cogs. It can also update the
parent object’s variable for storing the measurement results from another cog according
to a sampling rate for control systems and data logging applications.

The simplest application of the RC Time object is demonstrated here with Test Simple
RCTIME.spin, which repeatedly calls the RC Time object’s Time method. The Time
method expects three arguments: I/O pin, starting state (1 for decay or 0 for growth), and
the address of a variable that the Time method should store the result in. In the example
program, the Time method takes care of all the signaling in Fig. 4-15 and places the
measurement result in the tDecay variable. In this particular example, all the measure-
ments are happening in the same cog.

" Test Simple RCTIME.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 rc : "RC Time" ' RC decay/growth object
 pst : "Parallax Serial Terminal" ' Serial communication object

PUB Go | tDecay

 pst.Start(115200) ' Start Parallax Serial Terminal

 repeat ' Repeat loop
 waitcnt(clkfreq/10 + cnt) ' Refresh display at 10 Hz

 rc.time(18, 1, @tDecay) ' Measure P17 decay circuit

 ' Display measurement
 pst.Str(String(pst#CE, pst#HM, "tDecay = "))
 pst.Dec(tDecay)

Tip: The reason the Time method requires the address of a result variable
instead of just returning its value is to make simultaneous measurements in
other cogs possible with the same method call that works for sequential decay
measurements.

The potentiometer example in the on/off sensors section only returned a 1 or a 0. In
this example, the potentiometer’s analog range of motion is digitized into approximately
6000 different values, from 0 to just over 6000. A 0 measurement indicates that the dial
is turned all the way counterclockwise, and 6000+ indicates all the way clockwise.
The Parallax Serial Terminal in Fig. 4-17 indicates that the knob has been turned about
4000/6000, or two-thirds of the way clockwise. This digitized measurement represents
the decay time in terms of 12.5 ns clock ticks. The RC Time object utilizes one of the
cog’s counter modules to take the measurement. Code in the object confi gures the
counter module to count the number of clock ticks during which it detects a high signal
(above 1.65 V) applied to the I/O pin by the RC circuit. While the counter module counts
clock ticks, the cog waits until it detects the RC circuit’s transition from high to low.
Then it copies the accumulated clock ticks from the counter module to the memory
address that the parent object passed to the Time method. For example, the variable
address was @tDecay in Test Simple RCTIME.spin.

✓ Try replacing the potentiometer with the photoresistor. Simply remove the
potentiometer and plug the photoresistor into rows 28 and 29 in Fig. 4-16. When
you run the test application, the Parallax Serial Terminal will display smaller values
corresponding to brighter light or larger values corresponding to dimmer light.

Since the decay time is ∆t = 0.693 · C · R, a capacitor that’s 10 times the size will
result in decay times (and measurements) that are 10 times as large. Likewise, with a
capacitor that’s one-tenth the size, the measurements take one-tenth the time.

 Figure 4-17 RC decay measurements in the
Parallax Serial Terminal.

RESISTIVE, CAPACITIVE, DIODE, TRANSISTOR, AND OTHER 141

142 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

Try different size capacitors. The RC Time object has a TimeOut method that defaults
to 10 ms (clkfreq/100). For larger capacitors, it may be necessary to call the RC Time
object’s TimeOut method and pass it a larger timeout value, such as 100 ms, which is
clkfreq/10.

OTHER RC DECAY AND GROWTH CIRCUIT VARIETIES

Photodiodes generate current fl ow in proportion to light intensity, and devices such
as the AD592 temperature probe allow current to pass proportional to temperature.
Phototransistors also allow current through based on light intensity, but the relationship
between current and light is not necessarily linear. In all these cases, instead of allowing
the capacitor to discharge through the element, these devices conduct current either into
or out of the capacitor. Depending on the current direction, voltage across the capacitor
will either increase or decrease, and the resulting growth or decay measurement can be
used to quantify the current and the physical property it represents.

Information: For more information on the AD592 temperature probe and
blue-enhanced photodiode featured in this section, see the Applied Sensors Kit
and PDF documentation available from www.parallax.com. This is also a good
source of information for fl uid level and salinity sensing with RC decay.

The AD592 temperature probe shown in Fig. 4-18 is designed to measure the tem-
perature of liquids. For this circuit, the I/O pin has to apply a low signal to discharge the
capacitor. When the I/O pin direction is changed to input, the AD592 allows current to
pass in proportion to temperature, and the voltage at the upper capacitor plate increases.

 Figure 4-18 AD592 temperature probe.

www.parallax.com

Then, the Propeller measures the time from when the I/O pin changed to input to
the time the voltage at the capacitor’s top plate passes the 1.65 V logic threshold.
Since this sensor circuit measures growth instead of decay, the starting state in the
rc.time method call should be changed from 1 to 0: rc.time(18, 0, @tDecay).
This will cause the RC Time object to set the I/O pin low to discharge the capacitor
and then measure the amount of time it takes the capacitor to charge from 0 to 1.65 V.
The measurement will be in terms of clock ticks. It also would be a good idea in this
case to rename the variable from tDecay to tGrowth.

Tip: Converting clock ticks to other time increments is a simple matter of dividing
the number of clock ticks in a given unit into the clock ticks in the measurement.
First, defi ne the unit. Microseconds can be defi ned by us := clkfreq/1_000_
000. That’s the number of ticks in 1/1_000_000th of a second. Next, usResult :=
tDecay/us converts the number of clock ticks into a number of microseconds.

A photodiode generates small currents that are proportional to light intensity.
Figure 4-19 shows a photodiode and a schematic for an RC Decay circuit that incor-
porates the photodiode. The I/O pin has to be set high, but this time to discharge the
capacitor and set the voltage difference across its plates to 0 V. When the I/O pin
changes to input, the current from the photodiode charges the capacitor. As the voltage
across the capacitor increases, the voltage at the lower plate drops since the upper plate
is connected to the 3.3 V supply and its voltage cannot move. So the microcontroller
measures the time it takes for the voltage at the lower plate to drop from 3.3 to 1.65 V.
The code for this behaves identically to the RC decay measurements discussed earlier
since it starts by applying a high signal. Then the I/O pin changes to input and waits
for the voltage to drop from 3.3 to 1.65 V. RC measurements with a photodiode can be
slow. The RC Time object’s default measurement timeout should be adjusted to a larger
value with a call to its TimeOut method.

Figure 4-20 shows a schematic of the QTI module, which measures infrared refl ectiv-
ity of surfaces. It’s popular with robotics hobbyists for determining whether the robot

 Figure 4-19 Photodiode and circuit.

RESISTIVE, CAPACITIVE, DIODE, TRANSISTOR, AND OTHER 143

144 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

is above a black surface, which absorbs infrared, or a white surface, which refl ects it.
The letter q denotes charge, and the product name QTI was chosen as an abbreviation
of charge transfer infrared. The module has a built-in infrared LED circuit that emits
infrared light. If the infrared light refl ects off a nearby (about one-eighth of an inch
away) white surface and strikes the infrared transistor’s light collecting surface, it will
conduct much more current than if only a small amount gets refl ected back from an
infrared-absorbing black surface. The name “charge transfer” refers to the fact that
the infrared transistor is controlling the current, or charge transfer, into the capacitor. The
QTI module is another circuit that has to start with a high signal that discharges
the capacitor by pushing the voltage at the capacitor’s lower plate up to 3.3 V.

The QTI sensor needs 3.3 V connected to the White (W) terminal and 0 V connected
to the Black (B) terminal. Then, the Red (R) terminal can be connected to an I/O pin
for RC measurements. For example, if you connect the R terminal to P17, Test Simple
RC Time can be used to measure this sensor.

Tip: For best results, use black vinyl electrical tape on white paper or poster board.
Not all printers make black marks that absorb infrared. Most, but not all, black/white
laser printers do a good job, but photo printers are defi nitely hit-and-miss.

Pulse and Duty Cycle Outputs
Figure 4-21 shows examples of two sensors in the pulse and duty cycle output cat-
egory: the Ping))) Ultrasonic Distance Sensor and the Memsic 2125 Accelerometer.
Another example of a sensor that transmits pulses is the infrared receiver introduced in
the On/Off Sensors That Depend on Signaling section, which sends pulses that relay a
TV remote’s infrared signals. The infrared LED inside the remote turns on/off rapidly,

 Figure 4-20 The QTI.

typically in the 38 kHz range. Whenever the infrared detector inside the TV senses
infrared fl ashing on and off at 38 kHz, it sends a low signal; otherwise, it sends a high
signal. The infrared remote controls the amounts of time it transmits the 38 kHz signals
to control the pulses that the receiver inside the TV sends to the TV’s microcontroller.
The microcontroller’s fi rmware knows how to interpret these pulses and controls the
TV accordingly. Radio control (also abbreviated RC) signals for RC cars, boats, and
planes can also be monitored for the pulses they send with a Propeller microcontroller.
This makes it possible to give programmed intelligence to remote-controlled hobby
applications.

 The Memsic 2125 Accelerometer and Ping))) Ultrasonic Distance Sensor provide
two examples of sensors that communicate with pulse durations. Both of these devices
send pulses to the microcontroller, and the pulse durations (the amount of time the
pulses they send last) provide measurements of physical quantities. In the case of the
Ping))), it provides an indication of the distance to an object; in the case of the accel-
erometer, it provides acceleration information, which can, in turn, be used to indicate
velocity and position, or just simple tilt by measuring the acceleration due to gravity.

PING))) ULTRASONIC DISTANCE SENSOR—OBJECT
EXCHANGE EXAMPLE

Figure 4-22 shows how a microcontroller gets a distance measurement from the Ping)))
Ultrasonic Distance sensor. The microcontroller has to send the Ping))) sensor a pulse
to make it emit an ultrasonic chirp. The duration of the pulse the Ping))) sensor sends in
reply represents the time it takes for the ultrasonic chirp to make a round trip between
the sensor and a nearby object. Knowing the speed of sound in air, the application code
can use this time measurement to calculate the distance. The Ping))) sensor requires a
pulse that’s at least 2 µs, and returns a pulse that can last anywhere from 115 µs to
18.5 ms. Immediately after the microcontroller sends the pulse to initiate the chirp, it
has to change its I/O pin direction from output to input and then measure the Ping)))
sensor’s reply pulse that indicates the chirp’s round trip time.

 Figure 4-21 Ultrasonic Distance Sensor and dual-axis accelerometer.

PULSE AND DUTY CYCLE OUTPUTS 145

146 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

One of the best things to do when presented with a new sensor is check the Propeller
Object Exchange (http://obex.parallax.com) to fi nd out if an object already exists for
measuring the sensor. In the case of the Ping))) sensor, there’s an object that takes care of
all the signaling and time measurement tasks, and all you have to do is call its methods.

✓ Go to http://obex.parallax.com and enter Ping into the Search fi eld. Then, click
Go.

✓ Locate and download Ping))) Demo by Chris Savage from Parallax.
✓ Unzip the package.
✓ Open the Ping object, and click the Documentation button to view this object in

Documentation view.

Figure 4-23 shows the Ping object in Documentation view. Note that it has Inches,
Centimeters, and Millimeters methods, so no additional math is required to convert
echo time to distance. Each of those methods takes care of the math and returns a
distance value. Also note the 1 kΩ resistor in series between the Ping))) sensor’s SIG
terminal and the I/O Pin. In addition to series resistance built into the Ping))), the
1 kΩ resistor is suffi cient to protect the Propeller I/O pin’s 3.3 V input from the Ping)))
sensor’s 5 V output. If you decide to try out the Ping))) sensor with a Propeller chip,
make sure to include this resistor.

Judging from the Ping object’s documentation, no Init or Start method call is
required, so a simple call to the Centimeters method should return the distance mea-
surement in centimeters. This makes test code easy to write, but keep in mind that no
Start method also means that the code is executed in the same cog. The code will be
measuring pulse signals from the Ping))) sensor that last up to 18.5 ms, which can cause
unwanted delays in a cog’s code execution. In the event that 18.5 ms is too long for code
in a given cog, the application can launch another cog for Ping))) measurements with
the cognew command. Code executed by the new cog can then call the Ping object’s
methods and wait for results without slowing down code in the other cog. This is one
of the beauties of multicore programming.

 Figure 4-22 Ping))) sensor start and echo time signals.

http://obex.parallax.com
http://obex.parallax.com

 Figure 4-23 Ping))) object viewed in Documentation mode.

PULSE AND DUTY CYCLE OUTPUTS 147

148 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

{{ Test Ping Sensor and Object.spin

}}
CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 ping : "Ping" ' Ping Ultrasonic Sensor object
 pst : "Parallax Serial Terminal" ' Serial communication object

PUB go | cmDist

 pst.Start(115200) ' Start Parallax Serial Terminal

 repeat
 cmDist := ping.Centimeters(15) ' Get cm distance.

 ' Display measurement
 pst.Str(String(pst#CE, pst#HM, "cmDist = "))
 pst.Dec(cmDist)
 waitcnt(clkfreq/10 + cnt) ' Update display at 10 Hz

MEMSIC 2125 ACCELEROMETER MODULE—CODE FROM
OBJECT EXCHANGE

Figure 4-24 shows what happens inside the Memsic 2125 Accelerometer Module’s
MXD2125 chip when it gets tilted. This chip is actually a small chamber with a heating
element in the middle and temperature sensors at each side of the chamber on both the
X and Y axes. Just as soda sloshes around in a bottle in response to either acceleration
or tilt, the distribution of hotter and cooler nitrogen gas trapped in the chamber behaves
similarly, which is how the temperature sensors provide acceleration measurements.
This is an example of microelectromechanical systems (MEMS) technology.

Circuits built into the MXD2125 chip convert the temperature values to pulse trains
that indicate the distribution of hot and cold gasses in the chamber. These pulse trains,
shown in Fig. 4-25, in turn indicate the acceleration sensed by each axis. Pulses that

last 5 ms indicate zero acceleration along an axis, and pulse durations can deviate from
5 ms by +/− 1.25 ms/g, where g is the acceleration due to gravity. If −1 g is applied to
an axis, the pulse durations transmitted will be 3.75 ms. Likewise, accelerations from
0 to +1 would range from 5 to 6.25 ms.

Tip: According to the device’s datasheet, the MXD2125 reports acceleration in
terms of duty cycle, which is the ratio of high time to signal cycle time. In practice,
just the high pulses are equally accurate for this particular sensor.

Aside from examining object documentation, example programs that accompany
objects from the Propeller Library and Propeller Object Exchange can provide clues on

 Figure 4-24 Inside the Memsic Accelerometer (Excerpt from Smart Sensors and

Applications, Parallax Inc.).

 Figure 4-25 Memsic communication.

PULSE AND DUTY CYCLE OUTPUTS 149

150 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

how to use them. There are several objects for the Memsic 2125 Accelerometer Module
in the Propeller Library and on the Propeller Object Exchange, including MXD2125,
MXC2125_Simple, and Memsic2125. They all also have demonstration objects in the
Propeller Tool Software’s Examples\Library folder. All of them are designed for a TV
display, which is well and good if you are in the habit of using a TV for debugging, but
they may need some adjustment if you don’t have the hardware handy for connecting to a
TV. Fortunately, example programs that utilize the TV_Terminal object tend to be easy to
modify for use with the Parallax Serial Terminal object since the method calls that display
characters and numbers are similar. Also, the main clues to look for in demonstration and
example objects are how method calls to the building block object are implemented.

Of the three demonstration programs for the Memsic 2125 module, Paul Baker’s
MXD2125 Simple Demo.spin looks the most approachable in terms of modifying for
use with the Parallax Serial Terminal. The fi rst task is to examine the example program
along with the MXD2125 Simple object to fi gure out what methods MXD2125 Simple
Demo uses to get the accelerometer measurements. So check the nickname given to the
MXD2125 Simple object in the OBJ block, and then look for nickname.method calls. In
the case of MXD2125 Simple Demo.spin, the nickname is accel, and the object dem-
onstrates two different sets of method calls: the fi rst for using another cog to take the
measurements, and the second for taking measurements with the same cog.

After declaring the MXD2125 Simple object with the nickname accel, the fi rst
example in the Setup method calls accel.Start to launch the accelerometer process
into a new cog. The Start method call is embedded in a text.dec method call, so the
TV_Terminal object displays the result value that the Start method returns. By con-
vention, the Start method returns nonzero if it succeeded in launching a cog, or zero if
it failed because all the cogs are already in use. After the Start method call, the example
code uses accel.x to get the x-axis pulse measurement and accel.y to get the y-axis pulse
measurement. Note that both the accel.x and accel.y method calls also are embedded
in text.Dec method calls, so the TV_Terminal object displays the result returned by each
method call. After 20 measurements, the application calls accel.stop to stop the cog.
Next, it demonstrates measurements in the same cog by fi rst calling the Init method,
then accel.get_XY. Notice that the accel.get_XY(@XVal, @YVal) call passes variable
addresses to the method, which indicates that the get_XY method stores the measurement
results in those variables. After the method returns, both the XVal and YVal variables
should store the results of the accelerometer x- and y-axis pulse measurements.

'MXD2125 Simple Demo.spin

CON
 _CLKMODE = XTAL1 + PLL16X
 _XINFREQ = 5_000_000

 'Constants used by the Accelerometer Object
 Xout_pin = 0 'Propeller P0 to MX2125 Xout
 Yout_pin = 1 'Propeller P1 to MX2125 Yout
VAR
 long XVal, YVal

OBJ
 text : "tv_text" 'Located in default Library
 accel : "MXD2125 Simple"

PUB Setup
 text.start(12)

 'Separate cog example

 'load a cog with accelerometer driver
 text.dec(accel.start(Xout_pin, Yout_pin))
 text.str(string("Separate cog example",$0D))
 repeat 20
 text.dec(accel.x) 'Retrieve X axis value
 text.out(" ")
 text.dec(accel.y) 'Retrieve Y axis value
 text.out($0D)
 waitcnt(clkfreq>>1 + cnt)
 accel.stop 'Stop the accelerometer driver cog

 'Now show in same cog example
 accel.init(Xout_pin, Yout_pin)
 text.str(string("Same cog example",$0D))
 repeat 20
 'Get X and Y values by passing pointers to variables
 accel.Get_XY(@XVal, @YVal)
 text.dec(XVal)
 text.out(" ")
 text.dec(YVal)
 text.out($0D)
 waitcnt(clkfreq>>1 + cnt)
 text.str(string("Demo complete"))

Let’s try developing some simple test code with the Parallax Serial Terminal that
relies on the portion of MXD2125 Simple Demo.spin that loads a cog with the accel-
erometer driver using accel.Start and then calls accel.x and accel.y. Figure 4-26
shows a schematic of the test circuit.

A call to accel.Start(26, 27) launches the accelerometer monitoring code and
tells it that P26 is connected to the accelerometer’s x-axis output and P27 is connected
to the y-axis output. After examining the MXD2125 Simple object, it looks like the x
and y methods both return the pulse measurements in terms of clock ticks. Since the
accelerations are measured in terms of pulses that last milliseconds and fractions of
milliseconds, displaying the results in terms of microseconds might make more sense.
Since the pulses range from 3.75 ms to 6.25 ms, for +/−1 g with 5.0 ms level, this would
translate to 3750 to 6250 µs, with 5000 µs level. A simple way to do this is by defi ning
the number of ticks in a microsecond. Test MXD2125 Simple Object uses the expres-
sion us := clkfreq/1_000_000 to assign the number of clock ticks in a microsecond to
the local variable us. Then, the commands ax := accel.x/us and ay := accel.y/us

PULSE AND DUTY CYCLE OUTPUTS 151

152 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

convert the clock tick pulse measurements into microsecond pulse measurements before
storing them in the ax and ay variables.

" Test MXD2125 Simple Object

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 accel : "MXD2125 Simple" ' Memsic 2125 object
 pst : "Parallax Serial Terminal" ' Serial communication object

PUB go | ax, ay, us

 accel.Start(26, 27) ' x-axis to P26, y-axis to P27
 pst.Start(115200) ' Start Parallax Serial Terminal

 us := clkfreq/1_000_000 ' Clock ticks in a microsecond

 repeat

 ' Get microsecond measurements for the x and y axes.
 ax := accel.x / us
 ay := accel.y / us

 ' Display measurement at 10 Hz
 pst.Str(String(pst#CE, pst#HM, "ax = "))
 pst.Dec(ax)
 pst.Str(String(pst#CE, pst#NL, "ay = "))
 pst.dec(ay)
 waitcnt(clkfreq/10 + cnt)

 Figure 4-26 Memsic 2125
Accelerometer test schematic.

Frequency Output
Frequency output circuits are a common approach for determining the values of resistive
and capacitive sensors. A common frequency output circuit that utilizes either a resistive or
capacitive sensor employs a 555 timer IC to generate frequency signals that are determined
by the values of resistors and capacitors connected to the chip. The circuit involves two
resistors and a capacitor, and is called an astable multivibrator in electronics-speak. This
circuit causes one of the 555 timer’s pins to send a series of pulses, and resistor and capacitor
values set both the frequency and the pulse width. Changes in either a capacitive or resistive
sensor in this circuit result in changes in the multivibrator circuit’s output frequency, making
it a way to determine the sensor’s value. Since the resistors and capacitors can also control
the pulse durations, perhaps the temperature sensors inside the Memsic 2125 accelerometer
from the previous section uses a similar design to send those pulses at certain durations.

Figure 4-27 shows examples of Parallax sensors and sensor modules that use fre-
quency to indicate the values they measure; left to right they are the TSL230 Light to
Frequency Converter, Piezo Film Vibra Tab, and Xband Motion Sensor. Optical inter-
rupters such as the circuits that read black/white stripes on the inside of robot wheels
are also common frequency output devices that indicate motor output speed.

 Figure 4-27 Frequency output sensor examples.

FREQUENCY OUTPUT 153

154 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

An example object that is prewritten for the TSL230 Light to Frequency Converter is the
tsl230.spin object in the Propeller Library. Following is an excerpt from the tsl230 object
in documentation view, including a connection diagram for the TSL230 chip. This object
assumes that the user has studied the other documents on the TSL230 product page at www.
parallax.com that explain how it works. The short version of these documents is as fol-
lows: The TSL230 transmits frequency signals that indicate light levels. When the TSL230
transmits higher frequencies, it indicates brighter light levels, and lower frequencies indi-
cate dimmer light levels. The TSL230 has two different types of scaling, input sensitivity,
and output frequency. Input sensitivity can be scaled for different lighting conditions, and
output frequency can be scaled for the microcontroller application. Referencing the sche-
matic with pin map in the tsl230 object documentation excerpt, Pins 1 and 2 are named S0
and S1, and signals applied to those pins scale the device’s input sensitivity for a variety
of lighting conditions. For example, if (S1, S0) = %01, meaning 0 V is applied to S1 and
3.3 V is applied to S0, the scaling is 1×, suitable for bright lighting conditions, including
full sun. (S1, S0) = %10 is 10× sensitivity, which is useful for indoor lighting, and %11 is
100× sensitivity for low lighting conditions. Pins 8 and 7 are (S3, S2), and signals applied
to them can optionally slow down the output frequency for slower microcontrollers.

* TSL230 Light to Frequency Driver v1.0 *
* Author: Paul Baker *
* Copyright (c) 2007 Parallax, Inc. *
* See end of file for terms of use. *

**
 Taos TSL230 light to frequency sensor v1.0 driver
 with manual and auto scaling capabilities

Object "tsl230" Interface:

PUB Stop
PUB Start(inpin, ctrlpinbase, samplefreq, autoscale) : okay
PUB GetSample : val
PUB SetScale(range)

Program: 50 Longs
Variable: 6 Longs

www.parallax.com
www.parallax.com

With a maximum output frequency in the neighborhood of 1.6 MHz, there’s no
need for the TSL230 to slow its output frequencies down for the Propeller. That’s why
the object documentation shows both pins 8 and 7 grounded, to disable any output
frequency down scaling. The object documentation also explains that there are two
input sensitivity scaling modes: manual and automatic. With manual scaling, the parent
object can expect a value from 0 to 1.6 MHz for a given level of input sensitivity. If
the measurements approach either of those values, the application object has to detect
it and adjust the TSL230’s input sensitivity scale. With automatic input sensitivity
scaling mode, the Start method’s autoscale parameter is set to true, and the object
takes care of all this. So instead of results from 0 to 1.6 MHz with three different scale
options (1×, 10×, and 100×), the object simply reports results from 0 to 160 M, which
is a measurement range inclusive of all three scale settings.

When connecting the TSL230 to the Propeller chip, make sure to observe the
ctrlpinbase and ctrlpinbase+1 convention in the object’s documentation. It’s shorthand for
saying that the Propeller I/O pin number connected to TSL230 Pin 2 has to be one larger than
the I/O pin number connected to TSL230 pin 1. For example, if you connect TSL230 pin 2 to
Propeller I/O pin P25, TLS230 Pin 1 MUST be connected to Propeller I/O pin 24.

Test code that utilizes the tsl230 object also utilizes a TV display, but the code is
simple enough that porting it for use with the Parallax Serial Terminal is not a problem.
The tsl230 DEMO.spin object is in the Propeller Tool Software’s Propeller Library
Examples folder. The tv_text object’s Term.out($0D) method has the same effect on a
TV monitor that the Parallax Serial Terminal object’s pst.NewLine method has on the
Parallax Serial Terminal. According to the example code, the TSL230 chip’s Out pin is
connected to P0, and the TSL230’s S0 (pin 1) and S1 (pin 2) are connected to Propeller
I/O pins P1 and P2. Note that connecting TSL230 pin 1 to Propeller I/O pin P1 and
TSL230 pin 2 to Propeller I/O pin P2 follows the tsl230 object’s the ctrlpinbase and
ctrlpinbase+1 convention. Also, note that since autoscale is set to true, the tsl230
object will automatically adjust its input sensitivity to the ambient lighting conditions.

' tsl230 DEMO.spin
CON
 _clkmode = xtal1 + pll16x
 _XinFREQ = 5_000_000
OBJ
 term : "tv_text"
 lfs : "tsl230"

PUB Go
 term.Start(12)
 lfs.Start(0,1,10,true)

 repeat
 waitcnt(80_000_000 / 10 + cnt)
 term.dec(lfs.GetSample)
 term.out($0D)

FREQUENCY OUTPUT 155

156 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

Voltage Output
Voltage output sensors are common, and many circuits transform resistive or capacitive
sensors into voltage output sensors. Two examples of voltage output sensor circuits
are in the “Converting Analog Sensors to On/Off Sensors” section. The potentiometer
circuit in Fig. 4-9 and the photoresistor circuit in Fig. 4-10 both transform resistive
sensors into voltage output sensors. These sensors transmit continuous ranges of output
voltages (analog voltages) that indicate the quantities the sensors measure. Their out-
puts are commonly referred to as DC because they fl uctuate gradually over time. An
example of a capacitive voltage output sensor is the condenser microphone. A condenser
mic has built-in capacitors that translate air pressure fl uctuations across a diaphragm
into voltage fl uctuations that can be measured by a microcontroller. Since the voltage
fl uctuations are low amplitude and change rapidly with time, they are referred to as
small signal and AC. Microcontrollers use analog-to-digital converters to measure and
digitize sensor voltage outputs. Both A/D converter and ADC are common shorthand
names for analog to digital converter. Propeller applications that require voltage mea-
surements can make use of peripheral ADC chips or a technique called Sigma-Delta
analog-to-digital conversion.

PERIPHERAL ADCs

Peripheral ADCs typically use two means of transmitting digitized voltage measure-
ments to a microcontroller: parallel and serial. An ADC that transmits its measure-
ments with parallel communication has a number of output pins connected to a number
of Propeller I/O pins. For the sake of example, let’s say that there are eight ADC output
pins connected to eight Propeller I/O pins. With this scheme, the ADC can transmit
eight binary digits at once to the Propeller chip. This arrangement makes it possible
to report measurements quickly, but it takes a lot of I/O pins. In contrast, serial ADCs
typically use two to four lines for communication. The most common variety of serial
communication for ADCs is synchronous serial, where a clock signal is used to trans-
fer each binary digit in messages to and from the microcontroller. For example, to
get a measurement from a serial ADC with synchronous serial communication, the
Propeller sends pulses to the ADC on a clock line; with each pulse, the ADC sends
the next binary digit (a 1 or 0) in the measurement. Serial ADCs are slower than their
parallel counterparts, but require fewer I/O pins. Serial ADCs are not typically fast
enough to sample high-speed signals like video and radio intermediate frequency;
however, some parallel ADCs are fast enough to keep up. Some serial ADCs, on the
other hand, are fast enough to sample audio signals, while others are better suited to
slower signals, such as sensors that measure lower-speed processes—ambient light,
temperature, etc.

The measurement capabilities of peripheral ADCs are described in terms of resolu-
tion, which indicates the number of values the ADC can use to describe a range of input
voltages. Resolution is typically given in bits, with values like 8-bit, 12-bit, 16-bit, and so
on. If an ADC has 8-bit resolution, it means a measurement has 8 binary digits (bits)

in the number that describes the voltage. An 8-bit value can store a number from 0 to
255, which is 28 = 256 different values. A 12-bit value can store 212 = 4096 different
values, ranging from 0 to 4095.

The digitized voltage an ADC returns to indicate a voltage measurement is
typically:

 digitized voltage = 2bits · input voltage/input voltage range (4.1)

For example, with a 12-bit ADC, a 0 to 5 V input range, and a 2.5 V input voltage,
the digitized voltage measurement would be:

 digitized voltage = 4096 · 2.5/5.0 = 2048 (4.2)

Some ADCs are single channel, meaning they have one voltage input. Other ADCs
have 2, 4, 8, or even more channels. ADC inputs typically have two fl avors: single-
ended or differential. Differential measures the voltage difference between one input
and another, typically Vin+ and Vin−; single-ended inputs measure the voltage differ-
ence between the input voltage and ground.

Peripheral 4-Channel ADC Example with the MCP3204 One highly useful
ADC object on the Propeller Object Exchange is the MCP3208 object, written by
Chip Gracey and optimized and enhanced by Jim Kuhlman. This object uses a cog
to communicate with the MCP3208 and is optimized for high speed. It supports the
eight-channel Microchip MCP3208 synchronous serial ADC and the four-channel
MCP3204. Figure 4-28 shows a schematic of a four-channel MCP3204 connected to
some voltage output test circuits and to the Propeller chip.

Information: Other circuit examples in this chapter were built on the PE Kit
40-Pin DIP platform. This one was built on the PE Kit PropStick USB platform. The
Propeller chip is on the module in the lower-right side of the photo. The 40-Pin
DIP platform is recommended, especially for students. Aside from the worthwhile
experience of wiring up the entire Propeller system, including voltage regulators,
EEPROM program memory, crystal oscillator, reset circuit, and programming
connection, the parts in the 40-Pin DIP kit are inexpensive and easy to replace. In
contrast, the PropStick USB version is quick and easy to wire, but more expensive
to replace because if a project mistake damages one part, the entire module has
to be replaced.

Test MCP3208_fast.spin utilizes the MCP3208_fast building block object to acquire
four channels of A/D measurements from the MCP3204 ADC, and it displays them in
the Parallax Serial Terminal. The test code declares the MCP3208_fast object and gives
it the nickname adc. The MCP3208_fast object’s documentation comments specify the
parameters for the adc.Start call as Start(dpin, cpin, spin, mode), where dpin is
the data pins tied together with a resistor, as shown in Fig. 4-28; cpin is the clock pin,
spin is the enable pin, and mode is a parameter that was used in previous revisions of

VOLTAGE OUTPUT 157

158 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

 Figure 4-28 MCP3204 test circuit schematic.

the object. Inside the Main loop, the repeat channel from 0 to 3 loop contains the
expression adcVal[channel] := adc.In(channel). When channel is 0, the expression
stores the channel 0 ADC measurement in adcVal[0]. When channel is 1, the expres-
sion stores the channel 1 ADC measurement in adcVal[1], and so on.

" Test MCP3208_fast.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 pst : "Parallax Serial Terminal" ' Serial communication object
 adc : "MCP3208_fast" ' ADC object

PUB go | channel, adcVal[4]

 pst.Start(115200) ' Start Parallax Serial Terminal
 adc.Start(1, 0, 2, -1) ' Start MCP3208, mode is legacy

 repeat channel from 0 to 3 ' Initialize display
 pst.Str(String("adcVal["))
 pst.Dec(channel)
 pst.Str(String("] = ", pst#NL))

 repeat ' Main loop
 waitcnt(clkfreq/10 + cnt) ' Refresh display at about 10 Hz
 pst.Home ' Home position on PST
 repeat channel from 0 to 3 ' Get measurements.
 adcVal[channel] := adc.In(channel)
 pst.Position(12, channel) ' Display measurements
 pst.Dec(adcVal[channel])
 pst.ClearEnd

Figure 4-29 shows the values Test MCP3208_fast.spin displays in the Parallax Serial
Terminal. Each of the two potentiometers connected to MCP3204 channels 0 and 1 in
Fig. 4-28 has 4096 possible values (0 to 4095), which represent voltages from 0 to
(4095/4096) · 5 V. Another way of looking at 4095 is that it’s about 1.22 mV below 5 V.
Twist each potentiometer knob to adjust its voltage and monitor the results in the Parallax
Serial Terminal. In Fig. 4-28, the MCP3204’s channel 2 input is tied to 3.3 V, and the
Parallax Serial Terminal in Fig. 4-29 shows a measurement of 2719. Since 2719/4096
is approximately 3.3/5, this measurement is correct and indicates that the system is
functioning properly. The input voltage for channel 3 is tied to ground (0 V) in Fig. 4-28,
and the result of adcVal[3] in Fig. 4-29 is 0, so that measurement provides a second
indication that the system is functioning properly.

VOLTAGE OUTPUT 159

160 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

SIGMA-DELTA ADC

As mentioned earlier, a counter module is a confi gurable state machine that’s capable
of performing a variety of tasks independently for its cog. The On/Off Sensors that
Depend on Signaling section demonstrated an object that used a counter module to
transmit 38 kHz square waves. Another application of the counter modules built into
each cog is Sigma-Delta analog to digital conversion. Figure 4-30 shows how a cog’s
counter module interacts with a Sigma-Delta ADC circuit. When in “POS detector with
feedback” mode, the counter module opposes the state it detects at the input pin with

 Figure 4-29 MCP3204 test measurements.

 Figure 4-30 Sigma-Delta ADC circuit and signals.

the feedback pin, and keeps a running count of each clock tick at which the input pin
detects a high signal. In this way, the counter module works to maintain 1.65 V at the
input pin. The capacitors slow down the voltage response at the input pin to the highs
and lows the feedback pin sends, so the voltage at the input pin only deviates slightly
from 1.65 V, as the feedback pin rapidly transitions between 3.3 and 0 V every time it
detects a slight deviation below or above the 1.65 V input threshold.

The interplay between a cog’s counter module and the Sigma-Delta circuit makes it
possible to digitize the analog voltage input. The cog confi gures the counter module to
count the number of clock ticks when the voltage at the input pin is above 1.65 V, which
turns out to be proportional to the voltage input. If it so happens that the voltage input
is already at 1.65 V, the input pin detects high signals about half the time, adding 1 to
the counter module’s phase accumulation register (commonly referred to as the phase
register) for every clock tick at which a high signal is detected. If the voltage input is
instead 2.2 V, the input pin will detect and count high signals two-thirds of the time,
and the feedback pin will send low signals two-thirds of the time to keep the voltage at
the input pin at 1.65 V. Likewise, if the voltage input is 1.1 V, the input pin will detect a
high signal only one-third of the time, and the feedback pin will only send low signals
one-third of the time, and, of course, high signals the other two-thirds of the time. In
each case, the value stored by the counter module’s phase register accumulates at a
rate that’s proportional to the voltage input.

A cog typically works cooperatively with its counter module to perform Sigma-Delta
A/D conversion. The cog managing the process has to wait a precise number of clock
ticks, then copy the value stored in the counter module’s phase register, and then clear
it for the next sample interval. The resolution of the converter is defi ned by how many
clock ticks the loop takes before it repeats. For example, if the converter takes 2000
clock ticks to repeat, the number of times the input pin detected a signal above 1.65 V
could range from 0 to 2000. The typical Sigma-Delta ADC does not use all the clock
ticks, so for a range of 0 to 2000 clock ticks, a voltage input of 0 V might correspond to
250 and a voltage input of 3.3 V might correspond to 1750. The actual resolution of the
ADC in this case would be 1500, which is between 10 and 11 bits and would be used to
describe the peripheral ADCs in the previous section. The range of measurements also
depends on the output impedance of the sensor. If it has a high-output impedance, the
entire measurement range might be reduced from 250–1750 to 600–1400, for example.
The relationship between sensor output and ADC measurement should still be linear,
just on a different scale that will take a few tests to determine. However, the testing
can be worthwhile, since a couple of capacitors and resistors are inexpensive and don’t
require a lot of circuit board real estate in a project.

Test Sigma-Delta DC Signal Measurements Figure 4-31 shows a schematic
of the DC signal version of the Sigma-Delta ADC along with an example circuit and
Parallax Serial Terminal output for the Test Sigma-Delta ADC.spin object. Try running
the program and then twisting the potentiometer. Plotting the potentiometer voltage
versus ADC value should result in a linear graph. Test Sigma-Delta ADC.spin displays
the ADC measurements in the Parallax Serial Terminal. The Sigma-Delta ADC object

VOLTAGE OUTPUT 161

162 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

takes care of all the interactions with the circuit in another cog and constantly updates
the top fi le’s adcVal variable.

Information: The Test Sigma-Delta ADC and Sigma-Delta ADC objects are
included in the PE Kit Tools Sigma-Delta A/D Conversion article. It’s available
through the PE Kit Labs, Tools, and Applications sticky-thread at www.forums.
parallax.com. Also, if you are using the Propeller Education Kit to try these
programs and circuits, use the 100 pF capacitors included in the kit instead of the
1 nF capacitors shown in the schematic.

" Test Sigma-DeltaADC.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

 FB_PIN = 7 ' Sigma-delta ADC feedback pin
 IN_PIN = 6 ' Sigma-delta ADC input pin

 SAMPLE_TICKS = 2000 ' Clock ticks per measurement.

 Figure 4-31 DC Sigma-Delta ADC example circuit.

www.forums.parallax.com
www.forums.parallax.com

OBJ

 adc : "SigmaDeltaADC(Spin)" ' Declare Sigma-Delta ADC object
 pst : "Parallax Serial Terminal" ' Serial communication object

PUB go | adcVal, t, dt ' Go method

 pst.Start(115200) ' Start Parallax Serial Terminal

 ' Start adc object, pass pins, the number of clock ticks in a sample,
 ' and the address of adcVal. The SigmaDeltaADC object stores the
 ' latest measurement in adcVal once every SAMPLE_TICKS.
 adc.start(FB_PIN, IN_PIN, SAMPLE_TICKS, @adcVal)

 t := cnt
 dt := clkfreq/10

 repeat
 waitcnt(t+=dt)
 pst.dec(adcVAl) ' Display current measurement
 pst.Str(String(pst#CE, pst#HM, "adcVal = "))

The SigmaDeltaADC(Spin) object, nicknamed adc in the test object, has a Start
method with four parameters: feedback pin number, input pin number, clock ticks
per Sigma-Delta sample, and the address of a variable in which to store the latest
A/D conversion. Check the CON block for the IN_PIN, FB_PIN and SAMPLE_TICKs dec-
larations. The IN_PIN and FB_PIN declarations match the I/O pins in the Fig. 4-31
schematic. After these constants and the address of the adcVal variable get passed to
the SigmaDeltaADC(Spin) object’s Start method with adc.Start(FB_PIN, IN_PIN,
SAMPLE_TICKS, @adcVal), the SigmaDeltaADC(Spin) object updates the adcVal vari-
able with the latest measurement every 2000 clock ticks. This results in a 40 kHz
sampling rate because 2000 clock ticks at 80 MHz is 1/40,000th of a second. The test
program only checks the adcVal variable at a rate of about 10 Hz, but applications that
need to check at a faster sampling rate can do so. If a sampling rate needs to be faster
than 40 kHz, the assembly version SigmaDeltaADC(ASM) should be used because it
can accept sample intervals less than 2000 clock ticks.

Gain can be applied to A/D measurements by adjusting the resistor values in the
Sigma-Delta ADC circuit shown in Fig. 4-32. By choosing a larger feedback resistor
(Rf) and a smaller input resistor (Ri), it takes more cycles of low signals from the feed-
back pin to cause the voltage to swing down below 1.65 V if it’s above, and vice versa.
With the slower response, the input pin causes the counter module to accumulate high
signals for more clock cycles than when the resistors were matched. The result is a larger
ADC measurement for the same voltage input, which is essentially the same result that
could be obtained by passing the signal through an amplifi er. The advantage to setting
gain with the resistors is it eliminates the need for an amplifi er in some situations, which

VOLTAGE OUTPUT 163

164 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

in turn reduces the number of components and system complexity. If the ratio of input to
feedback resistors is reversed, it results in attenuated A/D measurements, which allows
the ADC to work with larger voltage input ranges if needed.

Test Sigma-Delta AC Signal Measurements Figure 4-33 shows a Sigma-Delta
microphone monitoring circuit built into the Propeller Demo Board. The 0.1 µF capaci-
tor in the fi gure is called a coupling capacitor, and it allows the mic’s AC signals to pass
through stripped of any DC component. Regardless of the DC offset the microphone
signals were riding to the left of the coupling capacitor, the voltage fl uctuations
(AC signals) transfer to the 1.65 V offset that the counter module maintains on the right
side of the coupling capacitor.

Tip: This circuit can also be built with the Propeller Education Kit and a
condenser mic (available at hobby electronics stores). For the PE Kit, make sure
to use the 100 pF capacitors marked 101 that come with the kit instead of the
1 nF capacitors the Propeller Demo Board uses.

 Figure 4-32 Sigma-Delta component values.

 Figure 4-33 AC Sigma-Delta circuit
connected to a microphone.

As mentioned earlier, condenser microphones (including the electret mic) convert
fl uctuations in air pressure to fl uctuations in voltage. The Sigma-Delta ADC does a great
job of measuring these voltages, and the ViewPort software introduced in the previ-
ous chapter can also do a great job of graphically displaying the time-varying voltage
signal the Propeller chip measures with the Sigma-Delta ADC. Figure 4-34 shows the
mic’s output in response to a whistle in ViewPort’s analog view. The Oscilloscope pane
displays the ADC measurements versus time, and the Spectrum Analyzer pane displays
signal strength versus frequency. The cursor on the Spectrum Analyzer pane can be
positioned with the mouse cursor at the top of the spike in the graph to determine that
the tone is 1.24 kHz at a glance.

Although the whistle is a single frequency, which could also be measured by dividing
the period of the sine wave into 1, the Spectrum Analyzer pane is exceedingly useful
for displaying the component sine waves and magnitudes in signals such as spoken

 Figure 4-34 ViewPort analog view.

VOLTAGE OUTPUT 165

166 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

phonemes and telephone dial tones. Figure 4-35 shows the phoneme “aaaaahhhh” pro-
nounced at a fairly high pitch. The component frequencies of the sound might be diffi -
cult to discern from the Oscilloscope pane, but the Spectrum Analyzer pane’s cursor tool
can be placed at the top of each spike to measure its frequency and amplitude. The sound
is primarily composed of three sine waves, with the lowest frequency at 468 Hz.

Like the potentiometer version of the code, the SigmaDeltaADC(Spin) object takes
care of all the interactions with the circuit in another cog and constantly updates the top
fi le’s adcVal variable. The Conduit object is running in a third cog and streaming the
values of the adcVal variable to ViewPort for display in the analog view’s Oscilloscope
and Spectrum Analyzer panes. The program has some vp.config calls that were set
fi rst with ViewPort’s dials and knobs. After that, they were copied from ViewPort using
Confi guration → Copy to Clipboard. When pasted into the top fi le, they appear as
vp.config calls. These vp.config calls cause ViewPort to automatically set the dials
and knobs accordingly after the ViewPort software’s Connect button is clicked.

 Figure 4-35 Say aaaaaahhhhhh.

' Display Mic with ViewPort.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

 SAMPLES = 2000 ' Clock ticks per measurement.

 FB_PIN = 9 ' Sigma-delta ADC feedback pin
 IN_PIN = 8 ' Sigma-delta ADC input pin

OBJ ' Object declarations

 adc : "SigmaDeltaAdc(Spin)" ' Declare Sigma-Delta ADC object
 vp : "Conduit"

PUB go | adcVal ' Go method with local variables

 ' Configure ViewPort
 vp.config(string("var:v1(acdc=ac)"))
 vp.config(string("start:analog"))
 vp.config(string("dso:view=v1(offset=0.4037,scale=40), Ð
 trigger=v1>auto, timescale=500µs,ymode=manual"))
 vp.config(string("lsa:timescale=10ms,timeoffset=0"))
 vp.share(@adcVal,@adcVal)

 ' Start adc object, pass feedback and input pins, number of ticks
 ' per sample & address of adcVal.
 adc.Start(FB_PIN,IN_PIN,SAMPLES,@adcVal)

 repeat ' Repeat loop keeps this cog going

Note: New ViewPort functions and features are on the horizon at the time of
this writing. To check for updated versions of code examples from this section
that are compatible with the latest version of ViewPort, go to ftp.propeller-chip.
com/PCMProp/Chapter_04. As mentioned earlier, the latest version of ViewPort
is available for a 30-day free trial from www.parallax.com.

Multicore Signal Acquisition, Analysis, and Display Since some applications
require signal analysis independent of a PC, one of the Propeller microcontroller’s cogs
can be devoted to this task while another cog is devoted to signal acquisition. This mul-
ticore approach greatly simplifi es signal acquisition and analysis, which can be espe-
cially challenging to implement with a single-core microcontroller. The next example
application demonstrates the multicore approach, and it uses other cogs to graphically
display a spectrum analysis on a TV display for good measure. TV display is another
diffi cult task for single-core microcontrollers. In contrast, the Propeller Library’s TV

VOLTAGE OUTPUT 167

www.parallax.com

168 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

and Graphics objects distill these multicore tasks down to a few method calls made by
the top-level application object.

Figure 4-36 shows TV display examples from Beau Schwabe’s Propeller Application
DEMO: Spectrum Analyzer (for Audio) posted at http://forums.parallax.com. The
microphone and Sigma-Delta ADC circuit the application uses is similar to Fig. 4-33,
and the TV connection was introduced in the previous chapter. The code utilizes the
Propeller Library’s TV and Graphics objects to draw the display and an object named
Fast IO Grab to buffer digitized microphone voltage measurements over time. The
top-level object then applies a noise cancellation and frequency detection algorithm to
determine the signal strengths at frequency intervals specifi ed in the code by a variable
named FrequencyStep. The application uses four cogs: one for the TV display, one for
the graphics engine, one for digitizing the microphone voltages, and one for the top-
level application, which does the frequency detection and then sends the data to the
Graphics object. This example still has four cogs available, and they could be devoted
to incorporating this application’s features into a larger application, perhaps robotic,
mechatronic, biomedical, or consumer.

Synchronous Serial
Synchronous serial communication protocols are common for peripheral IC and module
sensors. The MCP3204 ADC featured in the “Peripheral 4-Channel ADC Example with
the MCP3204” section used synchronous serial communication, and examples of
sensors with built-in synchronous serial interfaces include the DS1620 Digital
Thermostat, Parallax Digital Compass, Tri-Axis Accelerometer, and Solid State Gyro,
all shown in Fig. 4-37.

Synchronous serial communication protocols have numerous variations; examples
include Serial Peripheral Interface (SPI), three-wire, four-wire, and Inter-Integrated
Circuit (I2C). Each integrated circuit that uses a synchronous serial protocol has a
datasheet with timing diagrams and explanations of the signaling the microcontroller

Audio Spectrum Analyzer

500 1000

10 Hz Sweep Steps

1500

Audio Spectrum Analyzer

500 1000

1 Hz Sweep Steps

1500

 Figure 4-36 Propeller Audio Spectrum Analyzer application.

http://forums.parallax.com

has to use to communicate with the IC. Since sensors with synchronous serial interfaces
tend to be popular, objects that support them also tend to be published on the Parallax
Object Exchange.

PARALLAX 1-AXIS GYRO MODULE

A gyro sensor is a useful ingredient for self-balancing robots, as well as inertial guid-
ance and autopilot systems. The Parallax Gyro Module measures the rate of angular
rotation velocity about the axis perpendicular to the module’s PCB shown in Fig. 4-38.
In other words, you can think about the axis sticking up from the top of the module as
the handle of a top that you can twist to spin, and the gyro provides information about
how fast and in which direction it’s spinning (clockwise or counterclockwise). This
angular velocity is called the yaw rate.

 Figure 4-37 Sensors with synchronous serial communication.

SYNCHRONOUS SERIAL 169

170 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

Gyroscope Demo.spin is demonstration code for this gyro that integrates rotational
velocity measurements over time to calculate rotational position. It displays the rota-
tional position with the Parallax Serial Terminal as you rotate the board, as shown in
Fig. 4-39. The fi rst time you run the code, the angle will probably drift. Adjust the TRIM
constant at the beginning of the program until the angle stays still when the board is
not rotating. Then, rotate the board, and the angle and needle gauge in the display will
faithfully follow the board’s rotational position.

Information: At the time of this writing, the Parallax Gyro has not yet been
released, and the photo and example code here are all in the prototype phase. For
the latest test, demonstration, and object code, check the LISY300 Gyroscope
Module product page at www.parallax.com.

The LISY300AL yaw rate sensor on the Gyro Module transmits the module’s rate
of rotation as an analog voltage, which gets measured by an ADC101 10-bit ADC

 Figure 4-38 Rotational velocity.

 Figure 4-39 Rotational position display.

www.parallax.com

that’s also on the module. This ADC digitizes the voltage value for the microcontroller.
Remember from the “Peripheral ADCs” section that the digitized voltage value from
an ADC is

 digitized voltage = 2bits · input voltage/input voltage range

The analog voltage indicating no rotation should be 1.65 V. With a 3.3 V supply and
reference voltage, the 10-bit ADC measurement should be

digitized voltage = 1024 · 1.65/3.3 = 512 (4.3)

The output range of 1.65 V +/− 1.65 V corresponds to +/− 300 degrees per second
rotational velocity. Another way to look at it is that ADC measurements of 512 +/− 512
correspond to +/− 300 degrees per second. So the microcontroller can calculate the yaw
rate with this equation:

Yaw rate = (adcVal − 512) · 300 degrees/second ÷ 512 (4.4)

Figure 4-40 shows the synchronous serial communication timing diagram for the
Gyro Module’s ADC101S021 A/D converter. This timing diagram is an excerpt from
the ADC101S021 datasheet. The steps for this communication are

1. Initialize the nCS and SCLK high.
2. Set the I/O pin connected to the nCS pin low.
3. Apply 16 clock pulses, and record the SDATA after each rising edge.
4. Set nCS high.

 Figure 4-40 ADC101S021 timing diagram (Reprinted with permission of National Semiconductor

Corporation).

SYNCHRONOUS SERIAL 171

172 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

In Test Gyro.spin, a call to Init followed by a call to the Measure method implements
the timing in the diagram. The call to Init covers step 1, making nCS and SCLK output-high.
Measure takes care of the rest of the steps. It sets the nCS pin low, and then takes the SCLK
pin low, then high. After each transition from low to high, the command adcVal := adcVal
<< 1 | ina[SDATA] does two things. First, it shifts whatever is in the adcVal variable left
by one, leaving a 0 in the rightmost binary digit. Then, it copies the value (1 or 0) that the
ADC101’s SDATA pin is sending to the Propeller chip’s I/O pin (SDATA = 17 in this case)
to the empty rightmost bit in the variable. After repeating this 16 times, the entire measure-
ment has been shifted right three extra digits because of those two zeros and one tristate at
the end of the timing diagram. So the command adcVal >>= 3 shifts the entire value right
by three binary digits to correct this before returning the ADC measurement.

" Test Gyro.spin
'...
'
 SCLK = 16 ' I/O pin Assignments
 SDATA = 17 ' "DOUT" in the schematic
 nCS = 18 ' "/CS" in the schematic
'...
'
PUB Init

 outa[SCLK]~~ ' SCLK & /CS � output-high
 outa[nCS]~~
 dira[SCLK]~~
 dira[nCS]~~

PUB Measure : adcVal ' Get gyro ADC value

 outa[nCS]~ ' /CS � low
 repeat 16 ' 16 clock pulses
 outa[SCLK]~ ' Clock pulse falling edge
 outa[SCLK]~~ ' Clock pulse rising edge
 adcVal := adcVal << 1 | ina[SDATA] ' Get data bit from DOUT
 outa[nCS]~~ ' /CS � high
 adcVal >>= 3 ' Shift right to get rid of
 ' last three digits

ViewPort’s lsa tab makes it possible to examine the synchronous serial signaling to verify
that it’s correct. Figure 4-41 shows the communication signaling on lines 16 through 18.
Line 18 is nCS, and it does indeed go low for the entire exchange. Line 16 is SCLK, and the
Propeller sends 16 pulses to it; line 17 is SDATA, the binary values the ADC transmits in response
to each clock pulse. Remember that the last three SDATA that accompany the last three rising edges
are discarded. With that in mind, the binary value is %0111111101 = decimal 509.

The ViewPort package’s QuickSample object uses another cog to monitor the I/O
pins at up to 20 MHz. Here are the minimal steps for adding LSA ViewPort functionality
to your code:

✓ Add a 400 element frame array.
✓ Declare the QuickSample object along with the Conduit object.
✓ Add the following vp.register call before the vp.share call.

" Test Gyro with ViewPort.spin
'...
'

VAR

 long frame[400] ' Stores measurements of INA port

 Figure 4-41 ViewPort synchronous serial communication.

SYNCHRONOUS SERIAL 173

174 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

OBJ

 vp : "Conduit" ' Transfers data to/from PC
 qs : "QuickSample" ' Samples INA continuously in 1
 ' Cog- up to 20Msps
PUB Go | yawAdc

 vp.register(qs.sampleINA(@frame,1))' Sample INA into <frame> array
 vp.share(@yawAdc,@yawADC) ' Share the <freq> variable

'...
'

To display the data as shown in Fig. 4-41

✓ Load Test Gyro with ViewPort.spin into the Propeller chip.
✓ Click ViewPort’s Connect button.
✓ Click the lsa tab.
✓ Click the Plot button next to io in the ViewPort overview table.

Asynchronous Serial
Sensors that communicate with asynchronous serial protocols are typically equipped
with microcontroller coprocessors. Examples of such asynchronous serial sensors
include the Parallax GPS module and RFID reader shown in Fig. 4-42.

The Propeller chip uses asynchronous serial signaling to communicate with the
Parallax Serial Terminal. The serial communication activity is visible on I/O pin P30
in Fig. 4-41. That’s the Propeller chip transmitting serial messages that contain ViewPort
data to the USB adapter on its way to the PC. For most Propeller boards, there is a USB-
to-serial converter in the Propeller’s programming tool that converts incoming USB

 Figure 4-42 GPS and RFID modules.

 Figure 4-43 Letter "A" at 4800 bps 8N1.

ASYNCHRONOUS SERIAL 175

signals to serial messages, and it also converts outgoing messages from serial to USB
signals. On the PC side, a driver that supports the USB/serial chip on the Propeller’s
programming tool converts incoming USB messages back to serial messages, and it
also converts outgoing messages from serial to USB signals.

Tip: The Propeller chip can also be programmed directly through a COM port
using RS232 serial communication instead of USB; see the Propeller Tool Help.

EXAMINING SERIAL COMMUNICATION SIGNALS

For a closer look at serial communication, the Parallax Serial Terminal object can be
confi gured to transmit 4800 bps serial messages to an I/O pin, and the QuickSample
object can be confi gured to monitor and stream the I/O pin activity to the ViewPort
software for display in its logic state analyzer. Figure 4-43 shows an “A” character

176 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

transmitted by the P24 I/O pin at 4800 bps, 8 data bits, no parity, 1 stop bit. These serial
port settings are often listed in the abbreviated form: 4800 bps 8N1.

The ASCII numeric code that represents “A” is 65, or in binary %01000001. The
asynchronous serial message shown in the fi gure starts high, or in resting state. Since
the baud rate is 4800 bps, every binary bit is given a 1/4800 s time window. The fi rst
(leftmost) low signal, which is called the start bit, lasts for 1/4800 s. The start bit sig-
nals that eight more data bits are on their way. The fi rst data bit is a high, or binary 1.
Since asynchronous serial messages transmit the least signifi cant bit fi rst, this 1 is the
value in bit-0. In the case of the serial “A” byte, the least signifi cant bit, or bit-0, is the
rightmost 1 in the value %01000001. The next fi ve 1/4800 s time windows are all low,
transmitting fi ve binary 0s for bits 1 through 5, then a high signal for bit-6 and a low
signal for bit-7. After the last data bit, the I/O pin returns to resting state for at least
1/4800 s, assuming the protocol requires one stop bit.

View Serial Character with ViewPort.spin uses the Parallax Serial Terminal object to
repeatedly send an “A” character out P24 with the 4800 bps 8N1 serial communication
settings. The example program also uses ViewPort’s QuickSample object to monitor the
I/O pin activity from another cog. The repeat loop in the example program uses P24
to transmit an “A” character approximately once every 1/200th of a second. P23 sends
alternating high/low signals with each successive “A” character, which makes it con-
venient to set the ViewPort Logic State Analyzer’s trigger to make the serial messages
stay still in the display. The reason the application transmits serial messages with P24
instead of with the Parallax Serial Terminal object’s default P30 I/O pin is because the
Conduit object needs P30 to stream I/O pin data to the ViewPort software running on
the PC. P30 is connected to the Propeller programming tool’s USB-to-serial converter
along with P31 for programming and bidirectional serial communication with the PC.
These two pins are also used for communication with the debugging software packages
introduced in the previous chapter.

" View Serial Character with ViewPort.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

VAR

 long frame[400] ' Stores measurements of INA port

OBJ

 vp : "Conduit" ' Transfers data to/from PC
 qs : "QuickSample" ' Samples INA continuously in 1
 ' cog- up to 20Msps
 pst : "Parallax Serial Terminal" ' Serial communication object

PUB Go | yawAdc

 vp.register(qs.sampleINA(@frame,1))'sample INA into <frame> array
 vp.config(string("var:io(bits=[Serial TX[24P24]]),v1"))
 vp.config(string("start:lsa"))
 vp.config(string("dso:timescale=10ms"))
 vp.config(string("lsa:view=io,trigger=io[23]r,timescale=500µs"))
 vp.share(@yawAdc,@yawADC) 'share the <freq> variable

 ' Start Parallax Serial Terminal on I/O pins RX = P25 and TX = P24
 pst.StartRxTx(25, 24, 0, 4800) ' Baud rate = 4800 bps

 dira[23]~~ ' Set P23 to output

 repeat ' Main loop
 pst.Char("A")
 waitcnt(clkfreq/200 + cnt)
 !outa[23] ' Toggle P23 with each "A"

After the display was confi gured as shown in Fig. 4-43, ViewPort’s Confi gure → Copy
to Clipboard menu item was selected, which copied a number of vp.config calls to the
Clipboard. The resulting vp.config calls were then pasted into View Serial Character
with ViewPort.spin between the vp.register and vp.share calls. The vp.config calls
make the Propeller chip send the confi guration information to ViewPort so that it can
duplicate the settings that were in effect at the time you selected Confi gure → Copy
to Clipboard.

VIEW MORE VIEWPORT

For more information on topics like confi guring the Logic State Analyzer to display
the activity of particular I/O pins, see the Propeller Education Kit Lab: Propeller +
PC Applications with ViewPort, available from the Downloads & Articles link
at www.parallax.com/Propeller. Also, www.mydancebot.com has a 60-page PDF
manual, and a Videos link with some great video tutorials that demonstrate how to
confi gure ViewPort for a variety of applications.

ASCII stands for American Standard Code for Information Exchange. Each time
you press one of your computer keyboard’s printable character keys, it transmits the
information to your PC as an ASCII code. The ASCII codes 0…33 are nonprintable
characters that are used for terminal control and confi guration. The Parallax Serial
Terminal uses 16 of these for commands such as ClearScreen and NewLine. The ASCII
code for space is 32, and 33…126 are displayed by the Printable Ascii Table.spin
program and listed in Fig. 4-44.

ASYNCHRONOUS SERIAL 177

www.parallax.com/Propeller
www.mydancebot.com

178 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

 Figure 4-44 Printable ASCII characters.

" Printable Ascii Table.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 pst : "Parallax Serial Terminal" ' Serial communication object

PUB go | c

 pst.Start(115200) ' Start Parallax Serial Terminal

 pst.str(String(" ---ASCII Table----"))

 repeat c from 33 to 126

 ' Place cursor for each character in table.
 case c
 33..52 : pst.Position(0, c-31)
 53..72 : pst.Position(8, c-51)
 73..92 : pst.Position(16, c-71)
 93..112 : pst.Position(24, c-91)
 113..127 : pst.Position(32, c-111)

 ' Display ASCII code next to ASCII character.
 pst.dec(c) ' ASCII code (decimal)
 pst.Char(" ") ' Print a space
 pst.Char(c) ' ASCII character

GPS MODULE EXAMPLE

An example of a synchronous serial sensor is a global positioning system (GPS)
receiver. These receivers calculate the time difference between the arrival of a number
of satellite signals to determine geographic position, and they typically report the posi-
tion information using one of the National Marine Electronics Association (NMEA)
protocols. Although NMEA has a new protocol named NMEA 2000, the older NMEA
0183 protocol is still widely used, and the receivers are inexpensive. NMEA 0832
receivers communicate at 4800 bps, 8 bits, no parity, and 1 stop bit with no handshake.
This is the same serial confi guration the Parallax Serial Terminal software and object
would use if they were both confi gured to communicate at 4800 bps, and it’s also the
protocol that was used to transmit the letter “A” with P24 that was just displayed by
ViewPort in Fig. 4-43.

Parallax carries two different GPS receivers for prototyping, shown in Fig. 4-45. The
Parallax GPS Receiver Module on the left has a coprocessor that allows a microcon-
troller to request predigested information. The raw GPS receiver without the copro-
cessor is shown on the right. Since the Propeller chip has multiple processors, an
application can incorporate an object that launches a cog as a coprocessor to serially
communicate with the GPS receiver, digest the NMEA sentences, and return requested
information.

Figure 4-46 shows a circuit with the raw GPS receiver connected to the Propeller
chip. The wire harness that accompanies the receiver has six lines. If you only plan on
using the device with microcontrollers, consider removing the RS232 TX and RX lines;
if the RS232 TX line is inadvertently connected to a microcontroller I/O pin, the +/− 3
to +/− 15 V output could damage the I/O pin or even the microcontroller.

ASYNCHRONOUS SERIAL 179

180 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

 Figure 4-45 GPS receivers with and without coprocessors.

 Figure 4-46 GPS—propeller circuit.

While numerous objects on the Propeller Object Exchange support GPS, two that
really stand out for simplifying application development and reducing prototyping times
are I.Kövesdi’s GPS Float packages: GPS Float Demo and GPS Float Lite Demo. The
demonstration programs use the Parallax Serial Terminal to display GPS info and take
care of the fl oating-point calculations required for a variety of navigation tasks. In addi-
tion to the well-documented GPS_Float and GPS_Float_Lite objects, the demonstration
programs in each package feature method calls to the GPS object methods that show
how to use their many features.

The one “gotcha” with the GPS Float packages at the time of this writing is that the
I/O pins are declared in building block objects. Follow these steps to make the objects
compatible with the circuit in Fig. 4-46:

✓ Download GPS Float Demo and GPS Float Lite Demo from ftp.propeller-chip.com/
PCMProp/Chapter_04.

✓ Unzip each package into a folder.
✓ Open the GPS_Float and GPS_Float_Lite objects with the Propeller Tool software.
✓ Update the _RX_FM_GPS and _TX_TO_GPS constant declarations to 22 and 23,

respectively.

_RX_FM_GPS = 22
_TX_TO_GPS = 23

The GPS_Float_Lite_Demo and GPS_Float_Demo objects also communicate with
the Parallax Serial Terminal at 57,600 bps instead of 115, 200.

✓ Set the Parallax Serial Terminal’s Baud Rate drop-down menu to 57600.

Figure 4-47 shows the GPS_Float_Lite_Demo object’s output, taken at Parallax
Incorporated in Rocklin, CA. The latitude and longitude shown can be entered into

 Figure 4-47 GPS_Float_Light_Demo–Where in
the world is Parallax?

ASYNCHRONOUS SERIAL 181

182 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

http://maps.google.com. After clicking the Satellite button, you’ll see an aerial view of
Parallax. To get a similar indication of your location, follow these steps:

✓ Load GPS_Float_Light_Demo into the Propeller chip.
✓ As soon as the Propeller Tool software’s Communication window reports “Loading…”,

click the Propeller Serial Terminal’s Enable button.

The GPS receiver needs enough open sky in view to receive at least three, but pref-
erably four or more, satellite signals to calculate its position. On power-up in a new
location, the receiver may take several minutes to detect enough satellites. During that
time, a red indicator LED on the module will blink. When the receiver receives signals
from enough satellites, its indicator LED will stop blinking and remain on.

✓ Take the setup to an area with plenty of sky exposure and wait for the GPS receiver’s
indicator light to stop blinking and remain on.

When the GPS receiver’s indicator light stays on, the Propeller will relay the date/
time, latitude, longitude, and the rest of the information, similar to Parallax’ location
shown Fig. 4-47.

Questions about Processing and Storing
Sensor Data
There are several frequently asked questions about processing and storage of Propeller-
acquired sensor data. The most common question regarding processing is how to syn-
chronize an application object running at a lower speed with a higher-speed building
block object. Questions about storage typically involve long-term media that cannot be
erased if the application restarts, and another common question that comes up is how
to transfer information to a PC application.

HOW DO I SYNCHRONIZE MY SLOWER APPLICATION CODE
WITH A HIGH-SPEED PROCESS?

Let’s say that the ADC object samples the signal at 40 kHz, but an application needs
the information at a rate of 1 kHz. This might happen because an example algorithm is
available that is designed for 1 kHz, or maybe other peripherals in the system can only
respond at 1 kHz. Suffi ce it to say that one object needs the information at 1 kHz, but
the building block object samples at 40 kHz. A common mistake is to try to slow down
the building block object, which is simply not necessary. Instead, the application should
have a loop that repeats at 1 kHz and grabs the most up-to-date measurement from the
building block object. Remember the convention for a loop with waitcnt(t+=dt)
to synchronize the loop to repeat in dt clock ticks? Immediately after the waitcnt

http://maps.google.com

command, store the latest sensor measurement from the building block object. A low-
speed (10 Hz) example of this was demonstrated by the Test Sigma-DeltaADC.spin
object in the section on Sigma-Delta ADC.

HOW DO I STORE DATA FOR LATER RETRIEVAL AND KEEP IT
FROM GETTING ERASED?

The portion of the Propeller’s external EEPROM not used for storing the program can
be useful for storing small amounts of data. The PE Kit Tools: EEPROM Datalogging
article features a Propeller EEPROM object that allows the application to make backup
copies of segments from the Propeller chip’s Main RAM to the external EEPROM and
other methods for retrieving the stored data. This article and its objects are available
from http://forums.parallax.com.

Be careful with how you apply the Propeller EEPROM object; the Propeller Tool
software overwrites the lowest 32 KB in EEPROM when the Load EEPROM feature
is used for programming. There are three ways to prevent overwriting your data:

■ If data is stored in the lower 32 KB and a separate program is intended to be loaded
for retrieving the data, the Load RAM feature can be used to program the Propeller,
and the data on the EEPROM will remain intact.

■ A feature for reporting collected data can be incorporated into the application so that
a separate program does not need to be loaded into the Propeller chip.

■ Replace the 32 KB 24LC256 EEPROM, which is just enough for storing Propeller
applications, with a larger one, such as the 64 KB Microchip 24LC512. Values
stored at any address above 32 K in these larger EEPROMs will be safe from being
overwritten by EEPROM programming. This approach is probably the best for
prototyping.

These techniques are discussed in greater detail in the PE Kit Tools: EEPROM
Datalogging article.

For larger volumes of data, the Propeller Object Exchange has an entire section
devoted to data storage. One object that stands out in terms of usefulness is Tomas
Rokicki’s “FAT16 routines with secure digital card layer.” The beauty of this system is
that both the Propeller and a PC can read from and write to an SD card that has been
formatted with the FAT16 fi le system, and the object supports SD cards up to 4 GB.
John Twomey also expanded on this object with methods that can store strings and
numerical values.

An SD card adapter from www.ucontroller.com, shown in Fig. 4-48, makes prototyp-
ing Propeller applications with an SD card simple and convenient. Note in Fig. 4-49
that it only takes six wires to connect.

Tip: Aside from being used to store large volumes of sensor data, SD cards
have been used for numerous synchronized MP3 displays, such as fi reworks,
stage lighting, and even fountains. The Propeller chip’s multicore architecture
lends itself to these projects because separate cogs can be assigned to playback

QUESTIONS ABOUT PROCESSING AND STORING SENSOR DATA 183

www.ucontroller.com
http://forums.parallax.com

184 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

 Figure 4-48 SD card adapter.

 Figure 4-49 SD card adapter schematic and wiring.

and synchronized events. Likewise with sensor applications: One or more cogs
can be acquiring sensor data, and another cog can be storing the most recent
measurements and timestamps to the SD card.

Figure 4-50 shows a test from the fsrw-and-friends-1.6 package that was adapted for
the Parallax Serial Terminal. It was originally designed for a television display. The test
opens the SD card, reads the root directory, creates a fi le with some “R” characters, and
then closes the SD card. The program can be modifi ed to examine the contents of the SD
card as well, or you can examine it with your PC, provided you have an SD card reader
or SD card-to-USB adapter. If you don’t, SD card-to-USB adapters are inexpensive and
available at many offi ce supply, computer retail, and electronics outlets.

Although sdrw_test.spin was written for a TV display, porting it to sdrw_test for
PST.spin for use with the Parallax Serial Terminal was simple because the TV Terminal
and Parallax Serial Terminal objects’ text and number display method calls are simi-
lar. It was mainly a matter of replacing the TV_Terminal object declaration with
one for the Parallax Serial Terminal. Then, the term.Start method was updated to

 Figure 4-50 SD card test.

QUESTIONS ABOUT PROCESSING AND STORING SENSOR DATA 185

186 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

pst.Start(115200), and all term.out calls were replaced with term.Char. The method
calls that you should examine in the top-level object start with sdfat: sdfat.mount,
sdfat.opendir, sdfat.popen, sdfat.pputc, sdfat.pcclose, and sdfat.pgetc.
Although many of their functions can be guessed, make sure to read the documenta-
tion comments in the fsrw object to fi nd out more.

' sdrw_test for PST.spin

CON

 _clkmode = xtal1 + pll16x ' Crystal and PLL settings.
 _xinfreq = 5_000_000 ' 5 MHz crystal x 16 = 80 MHz

OBJ

 pst : "Parallax Serial Terminal" ' Serial communication object
 sdfat : "fsrw"

VAR

 byte tbuf[20]

PUB go | x

 pst.Start(115200) ' Start Parallax Serial Terminal
 x := \start
 pst.Str(string("Returned from start", pst#NL))
 pst.Dec(x)
 pst.NewLine

PUB Start | r, sta, bytes

 pst.Str(string("Mounting.", pst#NL))
 sdfat.mount(0)
 pst.Str(string("Mounted.", pst#NL))
 pst.Str(string("Dir: ", pst#NL))
 sdfat.opendir
 repeat while 0 == sdfat.nextfile(@tbuf)
 pst.Str(@tbuf)
 pst.NewLine
 pst.Str(string("That's the dir", pst#NL))
 pst.NewLine
 r := sdfat.popen(string("newfilex.txt"), "w")
 pst.Str(string("Opening returned "))
 pst.Dec(r)
 pst.NewLine
 sta := cnt
 bytes := 0

 repeat 3
 repeat 39
 sdfat.pputc("R")
 sdfat.pputc(pst#NL)
 sdfat.pclose
 pst.Str(string("Wrote file.", pst#NL))
 r := sdfat.popen(string("newfilexr.txt"), "r")
 pst.Str(string("Opening returned "))
 pst.Dec(r)
 pst.NewLine
 repeat
 r := sdfat.pgetc
 if r < 0
 quit
 pst.Char(r)
 pst.Str(string("That's, all, folks! 3", pst#NL))

" Excerpt from sdrw_test, Copyright (c) 2008 Tomas Rokicki,
" obex.parallax.com

HOW DO I TRANSMIT DATA FROM THE PROPELLER TO THE PC?

One quick and simple way to bring data from the Propeller chip to the PC is by dis-
playing the values in the Parallax Serial Terminal. The values can then be copied with
CTRL+C and pasted into a text document. Provided the values the Propeller sends to the
Parallax Serial Terminal are formatted so that each number on a given line is separated
by a comma, most data analysis and number crunching software packages can import
the text fi le as comma delimited. Tab delimited tends to be the default import setting
for these software packages, but they all have comma delimited option as well, and it
displays much better in the Parallax Serial Terminal that way.

Most programming environments also have COM port features that can be programmed
to exchange data with the Propeller chip. This makes it possible to use an actual COM
port, serial-over-USB, or even serial-over-Bluetooth to transfer the information. Just a
few examples of programming environments with COM port features include Microsoft
Visual BASIC, Microsoft Visual C#, MATLAB, and LabVIEW. Of course, the PC appli-
cation has to be confi gured for the right COM port, and the PC code and Propeller code
have to agree on a communication protocol. A LabVIEW example is available in the
Propeller Education Kit Applications section at http://forums.parallax.com.

Summary
Instead of grouping sensors by the physical quantities they measure, this chapter
grouped them into common microcontroller interfaces. Some sensors had more than
one interface option because the circuits that connected them to microcontroller I/O
pin(s) determined the types of outputs. Resistive sensors, for example, can be measured

SUMMARY 187

http://forums.parallax.com

188 SENSOR BASICS AND MULTICORE SENSOR EXAMPLES

with RC decay time in an RC or resistor-capacitor circuit, or with an A/D converter if
placed in series with another resistor. Each interface section represented a variety of
sensors. For example, the RC decay interface can measure a potentiometer, resistive
or capacitive humidity sensors, a color-enhanced photodiode, or an infrared transistor,
to name just a few.

This chapter also introduced a number of different resources for writing code to
get information from sensors in each interface group, including the Propeller Object
Exchange, Propeller Library, and Propeller Education Kit resources. The Propeller
chip’s object-based Spin language lends itself to objects that solve tricky or complex
sensor problems, and the Propeller Tool Software’s Propeller Library and the Propeller
Object Exchange are two fantastic resources for getting objects that can save many
hours that might otherwise be spent on writing code from scratch. This chapter also
included some examples of writing code from scratch, for on/off sensors as well as for
an A/D converter, using the data sheet and timing diagrams.

Although this chapter featured brief explanations of each sensor, keep in mind that
any given sensor typically has a wealth of published information to support it. Many
companies that manufacture and sell sensors have a vested interest in making sure that
people who want to incorporate their sensors into projects and products succeed. Any
sensor Parallax manufactures and/or distributes has a product page, and on that product
page there will almost always be a Downloads section with PDF documentation that
explains how the sensor works and includes a test circuit and example code that shows
how to get measurements from it.

Exercises
1 Use Timestamp.spin to record when an object is detected with infrared.
2 Write a program that displays the gyro’s rate of rotation in degrees per second.

Consider making use of the Propeller Library’s FloatMath object.
3 Design a program that allows you to control the cursor’s placement in the Parallax

Serial Terminal with an accelerometer. Hint: Axis acceleration measurements vary
with tilt.

4 Design an application that uses the SD Card Reader to datalog GPS coordinates.

189

5
WIRELESSLY NETWORKING

PROPELLER CHIPS

Martin Hebel

Introduction
This chapter looks at how your Propeller can be part of a wireless sensor network
(WSN) to share data through wireless communications. WSNs are not intended for large
data transfers, such as fi les, but small amounts of data back and forth. The Propeller is
an amazing controller, and its ability to perform parallel processing makes data com-
munications fast and simple for use in a WSN. While the main task is being carried out,
other cogs can be sending or receiving data on the network.

With a lot to discuss and learn along the way, the fi nal completed project of this
chapter, depicted in Fig. 5-1, will be a three-node network that has:

■ A tilt-controller node transmitting drive and control data.
■ A robot (bot) node that receives the data; has a compass and ultrasonic range fi nder;

and is transmitting data on drive, range, and direction. It also has the ability to “map”
what is in front of it for remote display.

■ A node that accepts data from the bot and displays the information graphically on
the TV.

This chapter highlights communications to, from, and between Propeller chips using
XBee® transceivers from Digi International. Topics covered in this chapter include:

■ Networking and XBee overview
■ PC-to-XBee communications
■ Confi guring the XBee manually and with the Propeller

■ PC-to-Propeller and Propeller-to-Propeller communications with the XBee
■ Transparent and API data modes of the XBee
■ Forming a multi-node Propeller network for robot control and monitoring

This chapter will work through several examples of communications, but really, the
intent and focus is on how to perform the communications with the Propeller. It is left to
you, the reader, to take the principles discussed, combine them with your imagination or
needs, and develop a Propeller network of your own. Many other projects and informa-
tion from this text can be combined with this chapter for truly amazing projects!

 Figure 5-1 Three-node network for monitoring and control.

190 WIRELESSLY NETWORKING PROPELLER CHIPS

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_05.

Overview of Networking
and XBee Transceivers
The ability to communicate wirelessly has had such a signifi cant impact on personal
and data communications that many today cannot envision life without the use of cell
phones, Wi-Fi networks and Bluetooth® features in personal devices. The ability of
these devices to communicate on their respective networks (even your Bluetooth headset
forms a network with the player) relies on key features:

■ The use of addressing to send data to specifi c destination devices and to identify the
source of the data

■ The use of framing and packets to encompass the data itself in a “package” with
necessary information (such as the destination address)

■ The use of error checking to ensure the data arrives at the destination without
errors

■ The use of acknowledgements back to the source so that the sender knows the data
arrived correctly at its destination

Simple two-device (or two-node) systems may not need all these features. It’s really
dependent on the needs of the network, but if ensuring data arrives correctly to an
intended destination is vital, then these features are a must.

The XBee uses a fully implemented protocol and communicates on a low-rate wireless
personal area network (LR-WPAN), sometimes referred to as a wireless sensor network
(WSN) with RF data rates of 250 kbps between nodes. For the seasoned network readers,
LR-PANs operate using IEEE 802.15.4, a standardized protocol similar to Wi-Fi (IEEE
802.11) and Bluetooth (IEEE 802.15.1). The XBee is currently available in the XBee
802.15.4 series and the XBee ZigBee/Mesh series. The 802.15.4 series (often referred
to as Series 1) is the simplest and allows point-to-point communications on a network.
The ZigBee/Mesh series (Series 2) uses the ZigBee® communications standard on top
of 802.15.4 for WSNs to provide self-healing mesh networks with routing. This chapter
will focus exclusively on the XBee 802.15.4 and its higher-power sibling the XBee-Pro
802.15.4. These will be referred to as simply the XBee.

Key benefi ts of using the XBee include the ability to perform addressing of individual
nodes on the network, data is fully error-checked and delivery acknowledged, and data can
be sent and received transparently—simply send and receive data as if the link between
devices were directly wired. XBees operate in the 2.4 GHz frequency spectrum.

An image and a drawing of an XBee are shown in Fig. 5-2. The XBee is a 20-pin
module with 2.0 mm pin spacing. This can cause some aggravation when working with
breadboards and protoboards, which have 2.54 mm (0.1 in) pin spacing, but solutions
to this will be addressed.

OVERVIEW OF NETWORKING AND XBee TRANSCEIVERS 191

192 WIRELESSLY NETWORKING PROPELLER CHIPS

Don’t get scared! The XBee has a large number of pins, but for most of this chapter,
we will use only four:

■ Vcc, Pin 1: 2.8 V to 3.4 V (Propeller Vdd voltage)
■ GND, Pin 10 (Propeller Vss)
■ DOUT, Pin 2: Data out of the XBee (data received by Propeller)
■ DIN, Pin 3: Data into the XBee (data to be transmitted by Propeller)

Other pins include a sleep pin (Sleep_RQ) for low power consumption, fl ow control
pins (RTS/CTS), analog-to-digital (ADC) inputs, digital inputs and outputs (DIO),
among others. This chapter will discuss some of these other pin functions, but the focus
is on simply sending and receiving data between the Propeller and XBees using the
DOUT and DIN pins.

Note: Please see the XBee manuals on Digi’s web site for in-depth discussion
and information: www.digi.com and included in the distribution fi les.

The XBee has a current draw of around 50 mA and a power output of 1 mW with a
range of about 100 m (300 ft) outdoors. The XBee-Pro has a current draw of 55 mA
when idle or receiving data and 250 mA when transmitting. With a power output
of 100 mW, it has a range outdoors of 1600 m (1 mi) line sight. They both have sleep

 Figure 5-2 XBee module and pins.

www.digi.com

modes, with current draws of less than 10 µA, but can’t send or receive data while
sleeping. There are different antenna styles as well, though the whip antenna is prob-
ably the most popular.

Tip: Don’t get too excited about the distances. Line-of-sight communications
rely on height as well as distance. Due to ground reflections and deconstructive
interference (Fresnel losses), the heights of the antennas need to be taken
into account. For good communications at 100 m, a height of 1.4 m (4.6 ft)
is recommended.

Information: For more insight on distance, height issues, and calculations,
search the web for “Fresnel clearance calculation.”

Though the XBee is ready to go right out of the box, it is feature-rich and can be
confi gured for specifi c applications.

Hardware Used in This Chapter
The following is a list of hardware used in this chapter and their sources, but as you read
through, you’ll fi nd it’s not written in stone. We recommend you read through the chapter
to understand how the hardware is used before making an expensive investment.

■ 2—Propeller Demo Boards (Parallax)
■ 1—Propeller Proto Board (Parallax)
■ 1—Prop Plug (Parallax)
■ 3—XBee 802.15.4 (Series 1) modem/transceivers (www.digikey.com)
■ 3—AppBee-SIP-LV XBee carrier boards (www.selmaware.com or other styles avail-

able on www.sparkfun.com)
■ 1—PING))) ultrasonic sensor (Parallax)
■ 1—HM55B compass module (Parallax)
■ 1—Memsic 2125 accelerometer/inclinometer (Parallax)
■ 1—Boe-Bot chassis (Parallax)
■ 1—Ping Servo Mounting Bracket Kit (Parallax)
■ 2—Additional Boe-Bot battery holders or other portable battery source
■ Miscellaneous resistors

Testing and Confi guring the XBee
An important step in constructing a complex project is to make sure the individual devices
work properly and their use is understood. In this section, the XBees will be tested, con-
fi guration settings explored, and means of confi guring these devices discussed.

TESTING AND CONFIGURING THE XBee 193

www.digikey.com
www.selmaware.com
www.sparkfun.com

194 WIRELESSLY NETWORKING PROPELLER CHIPS

Figure 5-3 shows the diagram for this test. A PC will communicate directly to an
XBee, and a remote XBee is set up with a loop-back jumper. In the loop-back, the
DOUT line of the XBee is tied to its DIN so that any RF data it receives is looped back
into the device to send it out again via RF.

The following is a list of the hardware and software used for this test, but there are
many ways to achieve the same results. Essentially, a means is needed to communicate
to an XBee serially from the PC and means to supply power to the base and remote
XBees.

Equipment and other software:

■ 2—Propeller Demo Boards (Parallax)
■ 2—XBees (www.digikey.com)
■ 1—Prop Plug (Parallax)
■ 1—AppBee-SIP-LV from Selmaware Solutions (www.selmaware.com)
■ X-CTU software from Digi International (www.digi.com)

The AppBee-SIP-LV is simply a carrier board for the XBee providing 3.3 V power
from the Demo Board and access to I/O in a breadboard-compatible header. Figure 5-4
shows the AppBee-SIP-LV and a drawing of the physical connections to the XBee.

 Figure 5-3 Confi guration and testing diagram.

www.digikey.com
www.selmaware.com
www.digi.com

Tip: Another good source of carrier boards and other XBee accessories is
www.sparkfun.com. Search their web site for XBee.

ESTABLISHING PC-TO-XBee COMMUNICATIONS

The fi rst task is to communicate with the XBee directly from the PC for confi guration
changes and monitoring. Figure 5-5 shows two ways of establishing communications:
using the Propeller as a serial pass-through device or communicating directly with the
XBee using the Prop Plug as a serial interface. Either method allows the serial connec-
tion between the PC and the transceiver.

If you are using the Propeller to pass serial communications, the program Serial_
Pass_Through.spin should be downloaded using F11. If the serial communications
port is closed in the software, the Propeller may be cycled when the DTR is toggled,
reloading the Propeller from EEPROM. Using F11 ensures a cycling of the Propeller
will reload the correct program.

The program itself is simple but highlights the power of Propeller. Microcontrollers
that provide multiserial communications are diffi cult to fi nd. Two instances of the

TESTING AND CONFIGURING THE XBee 195

 Figure 5-4 AppBee-SIP-LV carrier board and drawing with physical connections.

www.sparkfun.com

196 WIRELESSLY NETWORKING PROPELLER CHIPS

FullDuplexSerial object establish the transparent link. Data from the PC is sent to the
XBee, and data from the XBee is sent to the PC; with each method in separate cogs, it
allows transfer speeds tested up to 115,200 bps. But for now we need to stick to 9600 bps
since that is the default confi guration on the XBee.

OBJ
 PC : "FullDuplexSerial"
 XB : "FullDuplexSerial"

Pub Start

 PC.start(PC_Rx, PC_Tx, 0, PC_Baud) ' Initialize comms for PC
 XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee
 cognew(PC_Comms,@stack) ' Start cog for XBee--> PC comms

 Figure 5-5 Two methods of PC communications
with XBee.

 PC.rxFlush ' Empty buffer for data from PC
 repeat
 XB.tx(PC.rx) ' Accept data from PC and send to XBee

Pub PC_Comms
 XB.rxFlush ' Empty buffer for data from XB
 repeat
 PC.tx(XB.rx) ' Accept data from XBee and send to PC

Caution: Watch the I/O numbers! If another confi guration is used, modify the
pin numbers in the CON section of the code.

If you are using the Propeller for passing serial data:

✓ Connect the hardware as shown in Fig. 5-5a.
✓ Download the Serial_Pass_Through.spin program to the Propeller using F11.

If you are using the Prop Plug to communicate directly, connect it as shown in Fig. 5-5b.

✓ If you haven’t yet, download and install the X-CTU software available in the distrib-
uted fi les or from Digi’s web site. There is no need to check for updates—this can
take a long time and the basic installation has all that is needed for now.

✓ Open the X-CTU software. It should look similar to Fig. 5-6. Select the COM port
that your Propeller is communicating through.

✓ At this point, use the Test/Query pushbutton to test communications with the
XBee.

Caution: As always, only one software package can access the same COM
port at any time. You’ll get used to slapping your head when you can’t communicate
as you go between the Propeller tool software and X-CTU!

Tip: If communications fail, recheck your hardware and pin numbers, reload the
Propeller program, and verify no other software is using the COM port. If you
continue to have problems and it is not a brand-new XBee, the serial baud rate
may have been changed or the XBee may be in API mode—test various baud
rates and check the API box to test.

If all went well, you may have seen the RX and TX lights blink on the board and
received a message informing you communications were okay, along with the fi rmware
version on the XBee.

✓ Select the Modem Confi guration tab on the X-CTU software.
✓ If your XBee was reconfi gured, this would be a good time to click the Restore button

to return it to the default confi guration.
✓ Click the Read button.

TESTING AND CONFIGURING THE XBee 197

198 WIRELESSLY NETWORKING PROPELLER CHIPS

The screen should have loaded with the confi guration setting of the XBee as shown
in Fig. 5-7. Many of them will be explained shortly—we’re only going to use a handful
of the settings available. But for now, let’s test out some wireless communications.

TALKING XBee TO XBee USING LOOP-BACK

With a second XBee, supply power and connect a jumper between DOUT and DIN (or RX
and TX on the carrier board), as illustrated in Fig. 5-8, using the AppBee-SIP-LV car-
rier board (or similar). Do not connect to any Propeller I/O at this time—we are simply
using the board for power. We used a second Demo Board for this test.

✓ Power up the remote XBee with loop-back jumper in place.
✓ Click the X-CTU Terminal tab.
✓ Type “Hello World!”

 Figure 5-6 X-CTU software showing COM port selection.

You should see the TX and RX lights fl ashing on both units (if using the AppBee carrier)
and text in your Terminal window. You should see two of each character—what you
typed in blue and what was echoed back and received in red—as shown in Fig. 5-9.

Tip: Having problems? If you don’t see any data returning, be sure the remote
XBee is connected properly. If it is not a new XBee, if may have been confi gured
differently. Turn off both units and swap the XBees. After powering up, “Restore”,
the XBee to default confi guration using the X-CTU button, read the second XBee
using the X-CTU software, and test again.

TESTING AND CONFIGURING THE XBee 199

 Figure 5-7 X-CTU software showing XBee confi guration settings.

200 WIRELESSLY NETWORKING PROPELLER CHIPS

 Figure 5-8 Remote XBee connections for loop-back.

 Figure 5-9 X-CTU Terminal window.

Tip: Beyond testing purposes, the X-CTU software is not essential, and any
terminal program or other serial software package may be used, such as the PST
Debug-LITE software used in previous chapters. Just ensure baud rates match
between the software and the devices.

As noted, each character is transmitted as it is typed. The XBee can actually send a string
of characters at once (up to 100), but it only waits so long before assembling a packet to be
transmitted. We type too slowly to get multiple characters quickly enough with the default
confi guration, but we can assemble a packet of characters that will be kept together:

✓ On the X-CTU Terminal window, click Clear screen, and then click Assemble Packet.
✓ Type “Hello World!” in the packet box, and click Send Data.

You’ll notice your text is returned as a single packet.
One last test is the range test. This allows you to monitor the signal strength from

−40 dBm to the XBee’s sensitivity limit of around −100 dBm by having the software
repeatedly send out a packet to be echoed.

✓ Check the check box below the vertical RSSI (receiver signal strength indication).
✓ Click Start.
✓ Monitor the number of good packets received and signal strength.
✓ Block the area between the XBees or move the remote XBee to another room, and

test the effect on RSSI level.

Note: In theory, you should never see a bad packet (malformed data) in the
received data from the XBee, such as in the Terminal window. All data is error-
checked and retried if there is no response or if the error check fails. You should
receive either good data or no data at all. The serial-link issue with the XBee is a
more probable cause than an RF issue with bad data.

Now that we have an RF link going, it’s time to discuss and test some XBee
confi gurations.

XBee CONFIGURATION SETTINGS

As seen, the XBee has numerous settings that can be confi gured. This confi guration
can be performed through the Confi guration window, through the Terminal window,
or through strings sent out from the Propeller. Let’s fi rst take a look at some of the
more important settings shown in Table 5-1 for this chapter (we will use only a few)
and others of interest should you delve deeper with your experiments. Click the
Modem Confi guration tab of the X-CTU software to view the settings. Clicking any
setting will give a brief description and range of values at the bottom of the window.

OK, let’s test out a few things:

✓ Test and verify your loop-back setup by sending a string.
✓ Under Modem Confi guration, change DL to 1.
✓ Click Write.
✓ The XBee should be updated. Click Read and verify.
✓ Go to the Terminal window and type once again. You should get no response, and

the remote RX light on the AppBee should not blink.

TESTING AND CONFIGURING THE XBee 201

202 WIRELESSLY NETWORKING PROPELLER CHIPS

TABLE 5-1 SUMMARY OF PERTINENT XBee SETTINGS

COMMAND
CODE MEANING & USE

Networking & Security

CH Channel: Sets the operating frequency channel within the 2.4 GHz band. This
may be modifi ed to fi nd to a clearer channel or to separate XBee networks.

ID PAN ID: Essentially, the network ID. Different groups of XBee networks can be
separated by setting up different PANs (personal area networks).

DL Destination Low Address: The destination address where the transmitted
packet is to be sent. We will use this often to defi ne which node receives data.
A hexadecimal value of FFFF performs a broadcast and sends data to all
nodes on the PAN. The default value is 0.

MY Source Address: Sets the address of the node itself. This will be used often in
all our confi gurations. The default value is 0.

Sleep Modes

SM Sleep Mode: Allows the sleep mode to be selected for low power consumption
(<10 µA). While we won’t use it, a good choice is 1—Pin Hibernate. This would
allow an output of the Propeller to put the XBee to sleep (using the Sleep
Request pin) when it is not sending or expecting data.

Serial Interfacing

BD Interface Data Rate: Sets baud rate of the serial data into and out of the XBee.

AP API Enable: Switches the XBee from transparent mode (AT) to a framed data version
where the data must be manually framed with other information, such as address
and checksum. This is a powerful mode and will be explored in this chapter.

RO Packetization Timeout: In building a packet to be transmitted, the XBee waits
a set length of time for another character. If not received in the set time, the
packet is sent. This is why as we typed characters, each was sent and echoed
back. This can be important to change if you have multiple units sending data
to one node to ensure that all data sent is received as a single transmission
from one unit; otherwise, you may get data from various nodes intermixed.

I/O Settings

D0 – D8 Sets the function of the I/O pins on the XBee, such as digital output, input,
ADC, RTS, CTS, and others.

IR Sample Rate: The XBee can be confi gured to automatically send data from
digital I/O or ADCs. It requires the receiving node to be in API mode and the
data parsed for the I/O values.

Diagnostics

DB Received Signal Strength: The XBee can be polled to send back the RSSI level
of the last packet received.

EC CCA Failures: The protocol performs clear channel assessment (CCA)—that
is, it listens to the RF levels before it transmits. If it cannot get an opening, the
packet will fail and the CCA counter will be incremented.

By changing DL to 1, data is intended for an XBee at address 1. The default settings
on XBees are a DL of 0 and an MY of 0. Previously, we were sending data to a node
at address 0 from a node at address 0 and vice versa. Be aware, the XBee actually does
receive data, sees it is not the intended node, and then dumps it instead of passing it to
the DOUT pin (to which the RX LED is connected).

Let’s now try confi guring using the Terminal window. Due to timeouts, you may have
to type a little fast, so you may need a few attempts. Enter the following lines—do not
type what is in parentheses. Press enter after each line except for +++.

✓ (Wait three seconds since you typed anything last—this is guard time.)
✓ +++ (Do not press ENTER.)
✓ (Wait a few more seconds and you should see that it is now in command mode.)
✓ ATDL (Requests the current DL value; it should return 1)
✓ ATDL 0 (Sets the DL address to 0)
✓ ATDL (Again requests the DL address, which should be 0)
✓ ATCN (Exits AT command mode)
✓ Hello World?

If all went well, you should once again be getting echoes after changing the destina-
tion address back to 0. The waiting before and after the +++ is called the guard time,
and it ensures that if a string containing +++ is sent, the unit won’t fl ip into command
mode inadvertently.

Tip: Permanent changes? Using the Modem Confi guration feature of the X-CTU
software, all changes are saved to nonvolatile memory and will still be in place
after cycling power. Using the AT commands, the settings will revert to original
values after cycling power, unless the ATWR (write) command is sent to write to
nonvolatile memory.

The important aspect here is that just as we sent data strings to the Xbee for con-
fi guration changes, so can your Propeller confi gure the XBee through code. Multiple
commands can be used in one line by separating them with commas. For example, the
following sets DL to 0 and exits command mode: ATDL 0, CN.

TESTING AND CONFIGURING THE XBee 203

EA ACK Failures: If a packet is transmitted but receives no acknowledgement
that data reached the destination, EA is incremented. The XBee performs two
retries before failure. Additional retries can be added by using the RR setting.

AT Command Options

CT AT Command Timeout: Once in command mode, this sets how long of a delay
before returning to normal operation.

GT Guard Time: When switching into AT command mode, this defi nes how long
the guard times should be (absence of data before the command line) so that
accidental mode change is not performed.

204 WIRELESSLY NETWORKING PROPELLER CHIPS

TRY THESE!

✓ Try changing your MY address to 1 and sending data. You should see the remote
unit receive and transmit, but you get nothing back. Why?

✓ Change your DL to FFFF. This is the broadcast address—any nodes on your
network would receive it. Be sure to set MY back to 0 for the loop-back to
work!

✓ Use the command ATND (Network Discovery). After a few seconds, you
should see a list of other nodes in the network, including their MY address,
two lines of the physical address (like a MAC address), and the RSSI level
in hexadecimal.

✓ Use the command ATED (Energy Detect). You should see a list of about
11 hexadecimal values. This is the energy level seen on the various channels.
Higher values are less noisy—a value such as 5A (hexadecimal), for example,
converts to a level of −90 dBm.

✓ Use the Confi guration tab to restore the XBee to its default values when done testing,
or use the AT command ATRE, followed by ATWR, to save to memory.

UPDATING THE XBee VERSIONS

Just a note about the version of the XBees: In the Modem Confi guration tab, you
can see the version of fi rmware on your XBee, such as 1083, 10A5, or 10CD. Later
versions are more capable. The majority of this chapter requires at least 1083.
The fi rmware on the XBee can be updated by selecting a new version, checking
Always update fi rmware, and clicking Write, but this requires more data lines than
we have available with our confi gurations. A board such as the XBIB-U from Digi
International or the WRL-08687, the XBee Explorer, from www.sparkfun.com
(which can also double as a carrier board) is recommended. These boards can be
used for direct USB access to the XBee as well as changing the fi rmware, and they
supply power to the XBee.

Now that we can send and receive data and confi gure the XBee, we are ready to start
using Spin and the Propeller to communicate via the XBee.

Sending Data from the
Propeller to the PC
In this section we will equip a remote Propeller/XBee system with a couple of sensors
and then transmit the data from the sensors back to the base XBee to send the data to

www.sparkfun.com

the PC for monitoring. The base can be the Propeller using serial pass-through, using
the Prop Plug to the XBee, or using a dedicated XBee-to-PC board, as previously
mentioned. The sensors used for testing are Parallax’s HM55B compass module and
the PING))) ultrasonic range fi nder. These devices will eventually assist in our robot
project, but you are free to modify the code to use any of the sensors previously explored
in this text.

Additional equipment:

■ HM55B Compass Module
■ PING))) Ultrasonic Range Finder
■ Or other sensors as desired, with appropriate code

Figure 5-10 is an image of the nodes. Even though we don’t need to just yet, we will
use this opportunity to set the DL address of the remote unit to 0 to ensure it is sending
data to the base unit.

✓ Connect the PING))) sensor and HM55B compass on the remote unit as shown
in Fig. 5-11. If a different I/O pin is used, update the pin numbers accordingly
in the CON section of the code. Connect the LEDs as well; we will use them
shortly.

✓ For the base unit XBee, open and clear the X-CTU Terminal window. Open the
COM port if closed. Having that port in use will help ensure the correct Propeller is
programmed.

✓ Download Simple_PC Monitoring_from_Remote.spin to the remote unit.
✓ Monitor the remote unit’s LEDs—they should blink rapidly a few times after several

seconds as the XBee is confi gured.
✓ Monitor the base unit’s Terminal window. A “ready” message should be displayed,

then the readings of the sensors should be reported every half-second.
✓ Test the compass bearing. It should read 0 to 8191 (roughly) as you rotate it, with 0

being approximately magnetic north.
✓ Test the range finder by placing an object in front and moving it in and out.

The PING))) sensor will report distances from roughly 30 to 3000 mm (3 cm
to 3 m).

✓ If either sensor fails to respond properly, check your connections and code.

Tip: The range fi nder has a fairly large angle of emission and detection. Test this
by putting an object to the side of range fi nder and going in and out to determine
how wide the angle is at different distances.

After initializing the XBee and compass, there is a three-second delay, +++ is sent
followed by another three-second delay and the string of “ATDL 0, CN.” Finally, a
byte of 13 representing a CR or ENTER key is sent. The destination address is set to
0 and command mode is exited (CN) in exactly the same fashion as you did in the
Terminal window.

SENDING DATA FROM THE PROPELLER TO THE PC 205

206 WIRELESSLY NETWORKING PROPELLER CHIPS

 Figure 5-10 Base and remote nodes.

 delay(3000) ' Guard time for AT mode
 XB.str(string("+++")) ' Send AT command request
 delay(3000) ' Guard time
 XB.str(string("ATDL 0,CN")) ' Send code to set DL = 0
 XB.tx(13) ' Send carriage return

The command codes from the Propeller are passed to the XBee using the FullDuplexSerial
object duplicating your serial terminal. Through this method any number of commands may
be sent to the XBee for confi guration changes on initialization or during operation. Those
3-second guard times can cause lag during operation, but we’ll deal with that soon.

In the SendData method, you can see that the range and direction (theta) are read
from the devices. Using a combination of text strings and XB.dec (decimal) methods,
the data is sent to the base XBee, where it is passed through to the PC for monitoring
in the Terminal window. Figure 5-12 is a sample output of received data.

 repeat
 range := Ping.Millimeters(PING_Pin) ' Get range in mm
 theta := HM55B.theta ' Get bearing (0-8191)
 XB.str(string(13,13,"Ping Range(mm): "))' Send string to base
 XB.dec(range) ' Send range as decimal
 XB.str(string(13,"Direction(0-8192): "))' Send string to base
 XB.dec(theta) ' Send bearing as decimal
 delay(500) ' Short delay before repeat

SENDING DATA FROM THE PROPELLER TO THE PC 207

 Figure 5-11 Remote unit with PING))) and compass.

208 WIRELESSLY NETWORKING PROPELLER CHIPS

TRY IT!

✓ Try adding a simple device, such as a pushbutton, and reporting its state back
to the PC. If you are out of I/O, you may remove the LEDs.

Polling Remote Nodes
In an LR-PAN, nodes typically come in one of three fl avors:

■ Coordinators help manage the network, from controlling communications to assign-
ing information to devices.

■ End devices are used to read and control devices on the network.
■ Routers are used to pass data between nodes at distances too far to reach directly.

There is nothing prohibiting end devices from talking to one another, and once a
network is established, the coordinator’s job may come to an end. In this chapter we
will refer to the base unit, the one at the PC, as a coordinator because it will help con-
trol communications and be a common collection point. Our remote nodes will be end
devices that we will monitor and control.

Multinode communications can be tricky. Aspects to be dealt with include: Which node
can send data when? When data arrives, who is it from? Do nodes need permission to talk
or can they do so at any time? We need to ensure that nodes don’t talk over one another

 Figure 5-12 Sample output in Terminal window of range and bearing.

(causing collisions on the network) and that the receiving units know who the data is from
in order to respond appropriately or take some other action. XBee, using IEEE 802.15.4,
works similar to Wi-Fi. A node listens before it transmits to help ensure that no other
node is transmitting at the time (this is Clear Channel Assessment, or CCA). Delivery of
data is verifi ed through acknowledgements. If the sender does not get a response, it tries
again. This method is known as CSMA/CA or Carrier Sense, Multiple Access/Collision
Avoidance. Unlike Ethernet, which uses collision detection (CSMA/CD), a node cannot
listen once it starts transmitting so it cannot detect collisions.

So the data link layer of communications helps ensure data gets passed properly, but
it still doesn’t assist in higher-level functions controlling the who and when of commu-
nications. In the next section we will look at a method of using a Propeller acting as a
coordinator to poll end devices for their data. USB works in much the same way—each
device is polled one at a time to see if they need access or have data to send.

 COORDINATOR MANUALLY POLLING REMOTE END DEVICES

A hardware confi guration similar to the one from the previous section will be used,
but this time, the Propeller needs to be in the communications chain at the base instead
of simply using a Prop Plug for XBee communications. Also, to demonstrate control
action, the two LEDs on the remote end device provide control action. You are welcome
to have as many end points as you desire (well, up to 65,000), or just use one and change
the end point’s address to test. Figure 5-13 is a diagram of our network and hardware.

POLLING REMOTE NODES 209

 Figure 5-13 Hardware for coordinator polling.

210 WIRELESSLY NETWORKING PROPELLER CHIPS

In this example, the coordinator cycles through a range of end-point addresses by
changing the DL value of the coordinator’s XBee. It sends out codes and values to
request data from each end point and to control the LEDs on each. Before allowing the
coordinator to have control, we are going to manually test the control and responses.

✓ Add the LEDs to the remote end device.
✓ Open Acquisition_with_Control_End.spin.
✓ For each end device, number the constant MY_Addr in the CON section of the code

sequentially from 1 up, skipping a few numbers to test “unresponsive nodes.”
✓ Download Acquisition_with_Control_End.spin to each remote end device.
✓ Use the Propeller for serial pass-through or another PC-to-XBee confi guration at the PC.
✓ Change the DL of the coordinator/base XBee to 1.
✓ In the Terminal window, type some p’s and c’s. If your end point at address 1 is

awake, you should get values back for compass bearing and range fi nder distance.
✓ For this next test, use the “Assemble Packet” window. Type and send the following:

Type i3 and then hit Enter.
Type 1 and then hit Enter.
Click Send.

✓ Change the 1 to a 0 and send again.
✓ Test again by using 4 instead of 3.
✓ What you should see is LEDs on P3 and P4 turning on with 1 and off with 0.

Figure 5-14 is an image of our communications test.

 Figure 5-14 End-device responses to requests.

Looking at the end-device’s code, data communications with the XBee is now through
the XBee_Object. This is an object I wrote for easing some data communication and
confi guration issues. It uses FullDuplexSerial but greatly extends it.

Tip: The “XBee_Object” can be downloaded from Parallax’s Object Exchange
(http://obex.parallax.com). If you have previously downloaded it, be sure it is
version 2 or higher. It is also included in the book’s distributed fi les.

XB.AT_Init initialized the XBee to AT mode, allowing for short guard times (using
ATGT), so instead of six seconds to modify a confi guration, it can be done quickly in
code. XB.AT_ConfigVal allows passing an AT command and a value to set confi gura-
tions, such as the DL and MY addresses. The underlying code switches the XBee to com-
mand mode, sends data, and exits using the short guard times.

 " Enable XBee for fast configuration changes
 XB.AT_Init

 " Set MY and DL (destination) address.
 XB.AT_ConfigVal(string("ATMY"), MY_Addr)
 XB.AT_ConfigVal(string("ATDL"), DL_Addr)

In the ProcessData method, XB.rx is used to tell the Propeller to wait for one charac-
ter or byte of data. It then tests this character to determine what set of actions to take:

 dataIn = XB.rx
 Case dataIn
 "p": ' p = PING distance
 range := Ping.Millimeters(PING_Pin) ' Read PING in mm
 XB.dec(range) ' Send range as ASCII decimal value
 XB.cr ' End decimal string with CR

 "c": ' c = Compass
 theta := HM55B.theta ' Read Compass
 XB.dec(theta) ' Send theta of bearing as decimal
 XB.cr ' End with carriage return

 "i": ' i = I/O control
 IO := XB.rxDecTime(timeout) ' Accept IO number w/timeout
 state := XB.rxDecTime(timeout) ' Accept state (1/0) w/timeout
 if state <> -1
 dira[IO]~~ ' Set direction of pin
 outa[IO] := state ' Set state of pin
 XB.dec(outa[IO]) ' Send state back for verification
 XB.cr ' End decimal string with CR

If p, send back the decimal value of the range fi nder.
If c, send back the decimal value of the compass bearing.

POLLING REMOTE NODES 211

http://obex.parallax.com

212 WIRELESSLY NETWORKING PROPELLER CHIPS

If i, accept the next two decimal values and use them for I/O and State, which
sets the I/O direction to be an output and the state of the I/O. RxDecTime is used to
accept the decimal values with a timeout. This allows the program to continue to run
if incorrect data is received following a timeout period. Should a timeout occur, a −1
is returned to the value. In accepting the data, note that each decimal value must end
in an ASCII 13 or CR (or comma, see Sec. Data Acquisition and Control Using API
Mode). Finally, the actual value of the I/O is sent back.

✓ Change the coordinator/base to a nonexisting end-device address (DL) and try again.
You should get no data back.

What we are designing here can be considered a protocol—rules of communica-
tion. If you don’t follow the rules set forth, nothing, or even incorrect things, may
happen. When coding protocols, we attempt to cover all contingencies regarding
what could go wrong and how they will be dealt with, such as i3 and no further data.
What happens if you enter something other than a 1 or 0 for state? That contingency
is not covered!

The data between the units is kept simple—byte codes and decimal strings. This
allows short packets between the units and eases using the data in the code.

Caution: Be aware that currently the code can control any of the Propeller
chip’s I/O pins, so be careful of what you send for your IO values!

AUTOMATIC POLLING WITH THE PROPELLER

In this next exercise the Propeller will operate as the coordinator, polling each of the
end devices in succession.

✓ Ensure you have downloaded Acquisition_with_Control_End.spin to your end
device(s) using F11, with sequential MY_addr values while skipping a few values.

✓ In Acquisition_with_Control_Coor.spin, modify the values of DL_Start and DL_End
in the CON section to match the range of your end-device addresses.

✓ Download Acquisition_with_Control_Coor.spin to the coordinator Propeller.
✓ Once downloaded, open the Terminal window.
✓ Wait and watch… you should see results similar to Fig. 5-15. Note that in this test

only an end device with a MY_addr of 2 is responsive.

In Pub Start, once confi gured, the code loops through the range of defi ned end-
device values, passing the address to the Poll method. Pub Poll accepts the address,
sets the DL address, and informs the user. It then goes through a series of steps for
acquisition and control.

Calling Control_IO, the I/O number and state are passed to turn on the LEDs. This
method will send the correct i-instruction to control the end-device IO. The returning
value with a timeout is accepted, passed back, and displayed.

Pub Control_IO(pin, state) : Value

 XB.tx("i") ' Send i for IO control

 XB.dec(pin) ' Send pin as decimal value

 XB.cr ' Send CR

 XB.dec(state) ' Send state as decimal value

 XB.cr ' Send CR

 Value := XB.rxDecTime(200) ' Accept value with timeout

Next the GetDistance method is called, which sends the p-instruction, accepts return-
ing data, and passes it back for display. Then the GetAngle method is called; sends the

POLLING REMOTE NODES 213

 Figure 5-15 Coordinator responses from automated polling.

214 WIRELESSLY NETWORKING PROPELLER CHIPS

c-instruction; and accepts, returns, and displays data. Finally, the LEDs are again turned
off using Control_IO sending 0s.

Pub GetDistance : mm

 XB.tx("p") ' Send p to get range
 mm := XB.rxDecTime(50) ' Accept data with timeout

The cycle repeats each end-device value, pauses longer, and starts over. In each step
of the way, timeouts are used to ensure nonresponsive end devices do not lock up the
system and that they are reported as being nonresponsive.

In this example we are simply collecting data and controlling LEDs for testing pur-
poses while displaying information for the user. The returned data could be used by
the coordinator for some logical decisions or to control a local output or send data to
another end device for action.

TRY THESE!

✓ Add another sensor and the code to request and respond with data.
✓ Use a returned value in some way at the coordinator, such as lighting an LED

if the distance is within 100 mm (10 cm).
✓ Rapidly collect a remote value and plot it using ViewPort.

Though not used in our code, reading confi guration values from the XBee can be done
by sending the AT command and accepting returning data. The XBee uses hexadecimal
for all values. The receiver is fl ushed to ensure that no data exists in the Propeller’s object
buffer. In this example, the dB level of a recent XBee reception is read and displayed.

 XB.rxFlush
 XB.AT_Config(string("ATDB"))
 dataIn := XB.RxHex
 PC.DEC(-dataIn)

Using the XBee API Mode
API MODE AND DATA FRAMING

Continual polling can take a lot of time and resources to check for data that may change
infrequently. It is good to have the coordinator control the communications, but this requires
the remote units to be awake. Another mode for the XBee is called API mode, for application
programming interface. Instead of sending or receiving the data alone, the entire frame is
manually constructed for transmission and manually parsed on reception. The frame consists of
sender’s address, RSSI level, options, frame IDs, and the data or message itself. Depending on
the frame type, different types of data are carried. Some benefi ts to using API mode include:

■ Pull sender’s address directly from received frame.
■ Pull RSSI level from certain received frame types.
■ Place the destination address for the packet directly in the frame.
■ Use frames for local XBee confi guration as opposed to AT mode.
■ Use frames for REMOTE XBee confi guration (fi rmware version 10CD required).
■ Pass analog and digital data from the XBee’s I/O pins without a controller on the

remote (fi rmware version 10A3 or higher required).
■ Use frames that provide delivery notifi cation to the sender.
■ Data is received in a single frame (up to 100 bytes), ensuring it is from a single

source.

As you can see, using API mode opens many doors to fast and powerful commu-
nications, but it can be a little complex. The XBee Object supports the means for
constructing and retrieving data for many of the API frame types. Let’s look at how a
packet must be framed to be accepted for transmission, as shown in Fig. 5-16, taken
from Digi International’s XBee manual. This frame type is for sending strings between
units, such as our data.

Note: Data is always sent in frames between XBees, but when in AT mode
(transparent mode), the only thing we deal with is the data, or message, itself.

First, all frames start with a start delimiter so the receiving unit can locate where the
start of a frame is as data pours in. Next is a 16-bit length (MSB and LSB), which has
to match the number of bytes from after the length through to the checksum, but not
including it. This is followed by the API identifi er, a unique value telling the receiving
unit what type of message it is.

Next is the identifi er-specifi c data, consisting of the frame ID (if set to 0, it will sup-
press acknowledgement packets back to the controller; we will ignore these packets) and
then the 16-bit destination address as 2 bytes. To send data to a unit at address 1, these
would be values of 00 01. Options are set to disable acknowledgements or to send the
data as a broadcast. Next is the actual data—up to 100 bytes. And fi nally, all the byte

USING THE XBee API MODE 215

MSB (most significant byte) first,
LSB (least significant) last

Source Address (Bytes 5–6) RSSI (Byte 7)

0 × 81

0 × 7E

Start Delimiter Length Frame Data Checksum

MSB LSB API-specific structure 1 Byte

API
identifier

Identifier-
specific Data

cmdData

Options (Byte 8)

Received Signal Strength Indicator-
Hexadecimal equivalent of (–dBm) value
(For example: If RX signal strength = –40
dBm, "0 × 28" (40 decimal) is returned)

bit 0 [reserved]
bit 1 = Address broadcast
bit 2 = PAN broadcast
bits 3–7 [reserved]

Up to 100 bytes per packet

RF Data (Byte(s) 9 – n)

 Figure 5-16 API packet for transmitting string using 16-bit address. (Reprinted by

permission of Digi International.)

216 WIRELESSLY NETWORKING PROPELLER CHIPS

values up to that point are summed together to create a checksum value. The receiving
unit will perform a summation itself, verifying against this value before using the data.
If the packet is well formed, the XBee will accept this frame and transmit it. If not, it
will be discarded.

Simple huh? Actually, it’s not all that bad, but much more complex than just sending
a string to be transmitted. Let’s look at the Spin code that forms a packet when we send
a string, such as XB.API_Str(String("Hello!")).

From the XBee Object:

Pub API_Str (addy16,stringptr)| Length, chars, csum,ptr
{{
 Transmit a string to a unit using API mode - 16 bit addressing
 XB.API_Str(2,string("Hello number 2")) ' Send data to address 16
 TX response of acknowledgement will be returned if FrameID not 0
 XB.API_RX
 If XB.Status == 0 '0 = Acc, 1 = No Ack

 }}
 ptr := 0
 dataSet[ptr++] := $7E
 Length := strsize(stringptr) + 5 ' API Ident + FrameID + API TX cmd +
 ' AddrHigh + AddrLow + Options
 dataSet[ptr++] := Length >> 8 ' Length MSB
 dataSet[ptr++] := Length ' Length LSB
 dataSet[ptr++] := $01 ' API Ident for 16-bit TX
 dataSet[ptr++] := _FrameID ' Frame ID
 dataSet[ptr++] := addy16 >>8 ' Dest Address MSB
 dataSet[ptr++] := addy16 ' Dest Address LSB
 dataSet[ptr++] := $00 ' Options '$01 = disable ack,
 ' $04 = Broadcast PAN ID
 Repeat strsize(stringptr) ' Add string to packet
 dataSet[ptr++] := byte[stringptr++]
 csum := $FF ' Calculate checksum
 Repeat chars from 3 to ptr-1
 csum := csum - dataSet[chars]
 dataSet[ptr] := csum

 Repeat chars from 0 to ptr
 tx(dataSet[chars]) ' Send bytes to XBee

As you look through the code, you can see how all the individual bytes that make up
a well-formed frame for transmission are combined into an array of bytes, the bytes are
summed (actually subtracted from $FF one at a time) for the checksum, and the array
of bytes is transmitted.

When the data is received by the XBee, the frame is checked. If in API mode, the
frame shown in Fig. 5-17 is sent to the Propeller for processing. Based on the API

identifi er, the XBee Object can decide how to handle the frame data, and the top-level
code can determine what to do with that type of frame data.

We won’t go into the details, but again, specifi c bytes have specifi c meanings. In
API mode, all this data is sent out to the Propeller. The XBee Object accepts the data
and processes it accordingly using the RxPacketNow method. This method is actually
private (PRI). The method called is API_RX or API_RxTime(ms), which looks for the
start delimiter ($7E). Once found, execution is passed to RxDataNow to accept remaining
data. Once accepted, the identifi er is checked to determine the type of packet, which in
the case of our received string, would be $81. Next the packet is parsed, pulling out the
data and placing it into variables that can be accessed from the top-level code, such as
XB.RxRSSI to fi nd out the value of RSSI for the packet, or XB.srcAddr to get the sources
address. Note that the data is actually accessible through XB.rxData—it is not the actual
data, but a pointer to where the data string resides in memory.

Other methods can help us pull decimal data out. After receiving data, calling
XB.ParseDEC(XB.rxData,2) would pass the location of the string and pull out the second
decimal value in the string (values can be separated by ASCII 13—CRs—or by commas).

In sending decimal values, an API_DEC does not exist. Numbers, unless sent as raw
byte values, must be converted to a string and sent that way. The Numbers.spin object
can aid in the conversion, such as sending the range in API mode:

XB.API_str(num.ToStr(range,num#DEC))

But that’s the only thing that could be sent, since once called, the string is transmit-
ted in a frame. To keep our data together, another method is used to assemble a string
(packet) manually before sending it. This will be demonstrated in the example coming
up. In API mode, all data to be sent in one transmission must be assembled fi rst.

Note: Both transmitter and receiver do not need to be in API mode. One side
can be using transparent transmission and the receiver using API reception and
vice versa. This makes our job a little easier.

USING THE XBee API MODE 217

Identifies the UART data frame
for the host to correlate with a
subsequent ACK
(acknowledgement).
Setting Frame ID to ‘0’ will disable
response frame.

Frame ID (Byte 5) Destination Address (Bytes 6–7)

0 × 01

0 × 7E

Start Delimiter Length Frame Data Checksum

MSB LSB API-specific structure 1 Byte

API
identifier

Identifier-
specific Data

cmdData

Options (Byte 8)

MSB first, LSB last.

Broadcast = 0 × FFFF
0 × 01 = Disable ACK

0 × 04 = Send packet with
Broadcast PAN ID
All other bits must be set to 0

Up to 100 bytes per packet

RF Data (Byte(s) 9 – n)

 Figure 5-17 API packet for received string using 16-bit address. (Reprinted by permis-

sion of Digi International.)

218 WIRELESSLY NETWORKING PROPELLER CHIPS

DATA ACQUISITION AND CONTROL USING API MODE

In this example, we will continue using the coordinator and end-device(s) hardware, but use
API mode instead for data reception and transmission on the coordinator. The end devices
have the ability to transmit at any time; while we have it on a delay, another option may be to
use sleep mode for low power consumption and have it wake to transmit, or have it transmit
only when some event takes place, such as a range being too close (someone is near!).

The end device will send a string for the values range and theta without being
prompted. The receiver will accept the string in API mode and pull out the source address,
RSSI level, and data. It will then send back strings to blink the LED on the end device.

✓ Open and modify the DL value in API_Mode_End.spin for each of your end devices.
The value doesn’t matter, as long as it is not more than 255 ($FF). We are sending
only one byte to hold the address in our example. Note that the X-CTU software uses
hexadecimal values when confi guring as opposed to decimal.

✓ Download API_Mode_End.spin to your end device(s).
✓ Download API_Mode_Coor.spin to your coordinator.
✓ Open and monitor the coordinator’s Terminal window.

The resulting data should be similar to that shown in Fig. 5-18.

 Figure 5-18 Example of terminal data from API data at coordinator.

In the end-device’s code, the method SendUpdates is running in a separate cog to
allow GetData to monitor for incoming data continuously. This allows data to be sent
or received independent of the timing. The XBee is not in API mode, and SendUpdates
sends the string values for range, theta every two seconds as decimal strings, such as
the characters “1,” “0,” and “5” for the value of 105—three bytes’ worth of data for one
value. The unit does this endlessly.

Pub SendUpdates | range, theta
 HM55B.start(Enable,Clock,Data)
 XB.Delay(1000)
 repeat
 range := Ping.Millimeters(PING_Pin) ' Read range
 theta := HM55B.theta ' Read Compass
 XB.dec(range) ' Send range as decimal value
 XB.tx(",") ' Send a comma to separate
 XB.dec(theta) ' Send bearing
 XB.Delay(2000) ' Wait 2 seconds and send again

Caution: The XBee only waits so long in assembling a packet for transmission.
If the delay between data sent is too long (send some data, read a sensor and
process new data, then send the new data), it may send it as two different frames.
To increase the time it waits for more data, the RO (Packetization Timeout) value
can be increased.

In the GetData method, the Propeller endlessly awaits data in one cog. Once received, if
the byte is “i,” it accepts the next two bytes and uses them for IO number and state to control
an output pin. This is different from prior examples where we collected a decimal value.

 dataIn := XB.rx ' Wait for incoming byte
 If dataIn == "i" ' i = I/O control
 IO := XB.rx ' Accept IO number as byte value
 value := XB.rx ' Accept state (1/0) as byte value
 dira[IO]~~ ' Set direction of pin
 outa[IO] := value ' Set state of pin

Using bytes instead, the packet is always three bytes long. To control P20 to turn on,
the structure would be

| i | byte value 20 | byte value 1 |

Instead of

| i | string “20” (2 bytes or characters) | string “1” |

By using bytes as values instead of decimal string, the packet size can be com-
pressed. For values greater than 255 (maximum byte value), two bytes can be used
and combined:

Value = byte1 << 8 + byte2

USING THE XBee API MODE 219

220 WIRELESSLY NETWORKING PROPELLER CHIPS

. . . where byte1 (MSB) is shifted over by eight bits and then added to byte2 (LSB).
We used a similar technique in the RxPacketNow methods in the XBee Object to
assemble the 16-bit address from two received bytes.

In the coordinator’s code, XB.AT_Config(string("ATAP 1")) shifts the XBee in API
mode and the Propeller waits for an API packet to be received in ProcessFrame. If the
Identifi er (RxIdent) is $81, the packet is of the message variety, as opposed to a status
or other type. The source address is accessed and displayed.

 XB.API_Rx ' Wait for API data
 if XB.RxIdent == $81 ' If data identifier is a msg string
 ' Display source address
 PC.Str(string(13,"Data Received from address: "))
 PC.DEC(XB.srcAddr)

Since the actual message contained values separated by commas, the ParseDEC
method is used to pull out and display the range and bearing. The signal strength,
RSSI, is accessed and displayed.

 PC.str(string(13,"Ping Distance : "))
 Range := XB.ParseDEC(XB.RxData,1)
 PC.DEC(Range)
 PC.str(string(13,"Compass bearing : "))
 theta := XB.ParseDEC(XB.RxData,2)
 PC.DEC(theta)

 PC.str(string(13,"RF Signal strength: "))
 PC.DEC(-XB.rxRSSI) ' Display RSSI level

The ControlPin method is used to send data back to the end device. It is passed the
address to send the packet to (the source address of the incoming packet), the IO pin
number, and the state (0 or 1). In order to packetize the data, a new packet is constructed
and then passed to be transmitted.

Pub ControlPin(destAddr, pin, state)
 XB.API_NewPacket ' Clean out packet of old data
 XB.API_AddStr(string("i")) ' Add an i to packet
 XB.API_AddByte(pin) ' Add a byte of pin number
 XB.API_AddByte(state) ' Add a byte of pin state
 ' Send the packet
 XB.API_txPacket(destAddr,XB.API_Packet,3)

In ControlPin, the packet string in which the data will be sent is cleared out
(API_NewPacket). All bytes in the packet are set to 0 when cleared. The string and byte
values of i, pin number, and state are added to the packet (API_AddStr or AddByte).
API_txPacket is used to send the data to the correct address, the pointer for the packet
is given, and the number of bytes to be sent is provided.

The difference between the XBee Object’s API_str and API_txPacket is that strings
cannot have byte values of 0—a string ends with a byte value of 0. Our packet has a
byte value of 0 for possibly either pin or state, so we needed to specify that it would be
sent as a packet and then provide the number of bytes in it. Here are some examples of
transmitting API data to address 5:

Sending a simple string:

XB.API_str(address, string)
XB.API_str(5, string("Hello!"))

To send a string with a value, such as “Range = range value” (in objects, declare num:
"numbers"):

XB.API_NewPacket
XB.API_addStr(string("Range = "))
XB.API_addStr(num.ToStr(range,num#dec))
XB.API_str(5, XB.API_Packet)

To send just a byte in the packet:

XB.API_tx(5, 13)

Working in API mode can be intimidating, but its benefi ts are many. The XBee Object
has multiple methods for interfacing with the XBee in both modes with example code. It
would be of benefi t to read through the object documentation as well as the XBee manual.

TRY THESE!

✓ Modify the end-device code so that it sends data only if range < 100 mm.
✓ Add a pushbutton to the coordinator. Have it control an LED on the end device

(it’s not a good idea to have two different cogs trying to send data; comment
out the code to blink the LED on reception of data).

A Three-Node, Tilt-Controlled Robot
with Graphical Display
OVERVIEW AND CONSTRUCTION

A three-node network for controlling and monitoring a robot will be explored for the
last project in this chapter. The system shown in Fig. 5-19 has:

■ A Propeller Demo Board network node (address 0) with an accelerometer to measure
angle of inclination on two axes for the tilt controller

A THREE-NODE, TILT-CONTROLLED ROBOT WITH GRAPHICAL DISPLAY 221

222 WIRELESSLY NETWORKING PROPELLER CHIPS

■ A robot on the network (address 1) using a Propeller Proto Board on a Boe-Bot robot
chassis with HM55B compass, PING))) range fi nder on a servo bracket, and LEDs

■ A Propeller Demo Board on the network (address 2) driving a TV for video display
of the graphical display

Figure 5-20 shows the wiring connection diagram for each of the nodes. Note that in
switching to the Proto Board we will change the I/O pins used for the XBee.

Hardware construction tips for bot:

✓ If you are not familiar with the Boe-Bot robot, you may want to look through “Robotics
with the Boe-Bot” by Andy Lindsay, available for download at www.parallax.com/
education to familiarize yourself with the basic hardware and servo operation.

 Figure 5-19 3-Node bot network diagram.

www.parallax.com/education
www.parallax.com/education

 Figure 5-20 Hardware wiring diagram for bot system.

223

224 WIRELESSLY NETWORKING PROPELLER CHIPS

✓ For the bot, two 4-AA packs were used with the spare tied under the normal battery pack.
The second battery pack is used only for servo power. Attempts at using a single supply
caused voltage and current spikes affecting the Propeller chip’s operation. The connec-
tor of the battery pack was cut off and soldered to the servo header power and Vss
(see Fig. 5-21). Other sources may be used, but supply voltage should not exceed 7.5 V
or the servos can be damaged. Use coated wire to strap the batteries under the bot.

 Figure 5-21 Supplying separate power for bot’s servo drive.

 Figure 5-20 (Continued)

■ Ensure the HM55B compass is mounted facing forward and that it is away from large
current loads, such as batteries and servos. The magnetic fi elds will cause problems
with proper compass bearing.

■ The PING))) sensor is mounted using the PING))) Mounting Bracket Kit. Manually
rotate the servo to fi nd the center prior to mounting the bracket. Mount the cable
header so that servo rotation does not hit it (the servo turns further manually than
with the code—about 45 degrees each way).

■ A battery supply was used on the tilt controller as well for unfettered operation.

OVERVIEW OF SYSTEM OPERATION

Tilt Controller: This is used to read the Memsic 2125 accelerometer module, calculate
right and left motor drives based on inclination, and then send drive values to the bot.
The tilt controller, shown in Fig. 5-22, also receives data from the bot and uses the
PING))) range measurements to light the eight Demo Board LEDs, showing distances
of 100 mm for local range indication. Pressing the pushbutton will send a panning map
instruction to the bot to map the area in front of it for display by the TV graphics node.
This node has a MY address of 0 and a DL address of 1 (the bot).
Bot: This controls all function of the networked bot shown in Fig. 5-23, including:

■ Accepting drive values for motor drive. Should no data be received for 1.5 s, the bot
will stop and blink the red LED.

A THREE-NODE, TILT-CONTROLLED ROBOT WITH GRAPHICAL DISPLAY 225

 Figure 5-22 Tilt-controller board with Memsic 2125 Accelerometer.

226 WIRELESSLY NETWORKING PROPELLER CHIPS

 Figure 5-23 Networked bot with range fi nder, compass, and XBee.

■ Accepting panning map instruction (p) to perform mapping operation. When this instruc-
tion is received, the bot will stop and pan the PING))) sensor from right to left, measuring
distances and sending map data (m) to the TV graphics node and the tilt controller. When
mapping is complete, the bot will remain steady and blink the green LED until the tilt
controller releases it from mapping mode (user presses button again). The bot will send
a clear (c) code to the video to clear the display when map mode exits.

■ While driving, the bot will transmit updates (u) of right and left drive values, PING)))
range, and direction of travel from the HM55B compass (0-8191).

■ This node has a MY address of 1 and sends data to $ffff—all nodes on the network
for a broadcast.

Bot Graphics: Shown in Fig. 5-24, drives the graphics TV display showing:

■ The bot bearing as a rotating triangle and text
■ Distance to object as a red point in front of the bot and text
■ Yellow range marker circles at 0.25 m, 0.5 m, and 1 m
■ Left and right drives as bar indicators
■ Signal strength for RSSI (dBm) as bar and text

The update packets contain information for much of the display, and the RSSI is pulled
from the received frame through API mode. When the bot is in mapping mode, mapping

packets contain data to plot the range map. It also accepts clear codes from the bot to clear
the mapped display. This node has a MY address of 2 and sends out no data.

The output display of the graphics controller is shown in Fig. 5-25 in both normal
driving and with the bot performing a panning map operation.

Note: The PING))) range fi nder has a wide angle of emission and reception. Do
not expect pinpoint accuracy when mapping.

A THREE-NODE, TILT-CONTROLLED ROBOT WITH GRAPHICAL DISPLAY 227

 Figure 5-25 TV displays for normal and panning map data.

 Figure 5-24 Bot TV graphics controller.

228 WIRELESSLY NETWORKING PROPELLER CHIPS

BOT NETWORK CODE

Bot Tilt Controller For the tilt controller, in the SendControl method, if the button
is pressed, a series of p’s is transmitted. With the amount of data fl ying, some missed
bytes on reception are normal, and this helps ensure the bot gets a p-instruction for a
panning map operation. If not pressed, the accelerometer is read for the X- and Y-axis
(−90 to 90 degrees, 0 level) and the drive for each servo is calculated by mixing the
two axes of tilt for a fi nal servo value of 1000 to 2000 (the range of servo control) for
each. The data is sent as a “d” packet for drive.

 Forward := (accel.x*90-offset)/scale * -1

 ' Read and calculate -90 to 90 degree for turn
 Turn := (accel.y*90-offset)/scale

 ' Scale and mix channels for drive, 1500 = stopped
 Left_Dr := 1500 + Forward * 3 + Turn * 3
 Right_Dr := 1500 - Forward * 3 + Turn * 3

In the AcceptData method (which is running in a separate cog), incoming packets are
analyzed if update data (u) or map data (m) and the local LEDs are updated. Based on
the range, eight 1s are shifted to the left eight positions, then shifted right again based
on the range/100. This allows one LED to light for every 100 mm or 0.1 m, out to 800
mm or 0.8 m.

outa[16..23] := %11111111 << 8 >> (8 - range/100)

Bot Code For the bot controller, in Start, received bytes are analyzed with a timeout.
If any data is not received for 1500 ms, the red LED will begin to blink. Received data
is analyzed for either “d” for drive data or “p” to begin a mapping scan.

case DataIn ' Test accepted data

 "d": ' If drive data
 Right_dr := XB.RxDEC ' Get right and left drive
 Left_dr := XB.RxDEC
 SERVO.Set(Right, Right_dr) ' Drive servos based on data
 SERVO.Set(Left, Left_Dr)

 "p": ' p = pan and map command
 mapping := true ' Set flag for mapping
 outa[grnLED]~~ ' Turn on green LED
 Map ' Go map

The SendUpdate method is run in a separate cog to continually send out the status of
the range, direction, and drive values led by “u.” The value of theta is subtracted from

8191 to allow the direction of rotation to be correct in the graphics display. If a panning
map is in progress, updates are suspended due to mapping being true.

 Repeat
 if mapping == false ' If not mapping
 XB.Delay(250)
 Range := Ping.Millimeters(PING_Pin) ' Read range
 theta := HM55B.theta ' Read Compass
 XB.TX("u") ' Send "update" command
 XB.DEC(Range) ' Send range as decimal string
 XB.CR
 XB.DEC(8191-theta) ' Send theta of bearing (0-8191)
 XB.CR
 xb.DEC(Right_Dr) ' Send right drive
 XB.CR
 XB.DEC(Left_Dr) ' Send left drive
 XB.CR

When mapping, the value of pan is looped from 1000 to 2000, the range of allow-
able servo values. The range is measured, and the PanOffset is calculated. The value
of the "pan" has 1500 subtracted (recall that 1500 is a centered servo). The result is
multiplied by 2047 (90 degrees, with 8191 being a full 360 degrees) and divided by the
full range of pan. Finally, an “m” is sent followed by range and angle of the servo plus
the pan offset. This repeats for each value of pan, from 1000 to 2000, in increments of
15 steps or 1.35 degrees (15 · 90 degrees/1000 steps = 1.35 degrees). Once mapping is
complete, the system will wait until another “p” is received to exit pan mapping mode
while sending a “c” to clear the video display. The variable “mapping” is used as a
fl ag to prevent the SendUpdates code running in a separate cog from sending updates
while mapping.

Pub Map | panValue
 " Method turns servo from -45 to + 45 degrees from center in increments
 " and gets ping range and returns m value at each increment

 SERVO.Set(Right, 1500) ' Stop servos
 SERVO.Set(Left, 1500)

 SERVO.Set(Pan, 1000) ' Pan full right
 XB.Delay(1000)
 ' Pan right to left
 repeat pan from 1000 to 2000 step 15
 SERVO.Set(Pan,panValue)
 Range := Ping.Millimeters(PING_Pin) ' Get range calculated
 ' based on compass
 ' and pan
 PanOffset := ((panValue-1500) * 2047/1000)

A THREE-NODE, TILT-CONTROLLED ROBOT WITH GRAPHICAL DISPLAY 229

230 WIRELESSLY NETWORKING PROPELLER CHIPS

 XB.TX("m") ' Send map data command
 XB.DEC(Range) ' Send range as decimal
 XB.CR
 XB.DEC((8191-Theta) + PanOffset) ' Send theta of bearing
 XB.CR
 XB.delay(50)
 XB.delay(1000)

 SERVO.SET(Pan,1500) ' Re-center pan servo

TRY IT!

✓ Add another device, such as speaker, to your bot. Add a button on the tilt
controller and modify code to control the device from the tilt controller.

Bot Graphics The bot graphics code is responsible for accepting the data and dis-
playing it graphically on a TV screen. Note that this XBee is in API mode so that the
RSSI level may be pulled out of the received frame. The code looks for one of three
incoming byte instructions: “u,” “m,” and “c.” Updates, “u,” are messages with update
data as the data moves, with range, bearing, and drive values (limited between 1000
and 2000), and it retrieves RSSI level for display creation.

 Repeat
 XB.API_rx ' Accept data
 If XB.RxIdent == $81 ' If msg packet...
 if byte[XB.RxData] == "u" ' If updates, pull out data
 ' Get DEC data skipping 1st byte (u)
 range := XB.ParseDEC(XB.RxData+1,1)
 bearing := XB.ParseDEC(XB.RxData+1,2)
 rDrive := XB.ParseDEC(XB.RxData+1,3) <#2000 #>1000
 lDrive := XB.ParseDEC(XB.RxData+1,4) <#2000 #>1000
 RSSI := XB.RxRSSI
 Update

Mapping (m) strings are used to map what the bot “sees” without clearing off old
data while a mapping pan is in progress. Clear, “c,” is received once the bot switches
back into drive mode after mapping.

We aren’t going to delve too deeply into the graphics creation here, as it’s not
a major subject for this chapter. One point of interest is in that many graphic pro-
grams the video data is written into one part of memory (such as bitmap_base),
and when the complete display change is ready, it is copied into the section of
memory that the graphics driver uses to display the actual display. It is effectively
double-buffered to prevent flicker on the screen. We do not have the luxury of
the memory needed for that operation. Instead, to reduce flicker, values of the
old data are saved. When updating, the graphics are redrawn in the background

color to “erase” them, then the new data is used to draw the graphics in the cor-
rect color, such as in this code:

 ' Draw bot vector image
 gr.width(2)
 gr.color(0) ' White
 gr.vec(120,120, 100, (bearing_l), @bot) ' Erase last image
 gr.color(1) ' Black
 gr.vec(120,120, 100, (bearing), @bot) ' Draw new image

Many features of graphics.spin are used, including text, lines, arcs, and vector-based
graphics. The code is fairly well commented for adaptation.

TRY IT!

✓ Add another sensor to your bot. Modify both the bot and graphics code to send
and display the value.

Summary
In this chapter we looked at what the XBee is and how it can be confi gured and used in
a wireless sensor network. Using AT codes sent from the controller, the XBee can be
confi gured for specifi c applications, such as unique addresses used in polling operations.
In API mode, frames are sent and received with specifi c data. Using the networking
capabilities, a three-node bot system was developed for control and monitoring using
the graphics ability of the Propeller chip.

The ability to confi gure the device and send data between Propeller chips effi -
ciently and with addressing leads to a wide array of projects that can be implemented.
Allowing different Propeller chips to perform their own processing and easily com-
municating with each other brings the excitement of parallel processing to a whole
new level.

In my research with institutions, such as Southern Illinois University, University
of Florida, USDA in Texas, and the University of Sassari, Italy, I have been involved
in many XBee/Propeller (and some other controller) projects. These projects include
monitoring corn irrigation needs, biological monitoring, and monitoring the vibration
of citrus fruit as it’s shaken from the tree.

Wireless sensor networks are a powerful and quickly expanding fi eld for remote
monitoring and control. They are fi nding use in research and in building, plant, and
home automation. The Propeller, with its ability to perform parallel processing, is
an outstanding choice for monitoring and control. As mentioned at the outset of this
chapter, whether you build the projects in this chapter or simply gain an understand-
ing of the material, I hope you can use the base code and principles in projects of
your own invention.

SUMMARY 231

Exercise
A FINAL PROJECT FOR YOU—DIRECT XBee ADC/DIGITAL DATA

For our fi nal exploration into the Propeller/XBee combination, let’s exercise the XBee’s
ability to measure and transmit analog and digital data without a controller. The received
data has a packet identifi er of $83 (the XBee needs to have fi rmware version 10A3 or
higher to be able to this).

✓ Apply an analog voltage of up to 3.3 V (using a potentiometer or other device) to
ADC 0 (pin 20) and ADC 2 (pin 19) and a pushbutton to DIO2 (pin 18).

✓ Using X-CTU software, starting from the default settings, confi gure for a MY of
6 and for I/O settings, such as:
D0 = mode 2: ADC
D1 = mode 2: ADC
D3 = mode 3: DIN (Digital Input)
IR = 3E8 (sample rate of 1 second. $3E8 = 1000 decimal or 1000 ms of time).

✓ Connect the Vcc (pin 1) and the Vref pin (pin 14) of the XBee to 3.3 V. Connect Vss
to GND (pin 10). Do not connect anything else, including the Propeller.

✓ Download ADC-Dig Output Sample.spin to your coordinator board.
✓ Open the Terminal window and monitor. You should see something similar to Fig. 5-26.

 Figure 5-26 Displaying data from an XBee sending raw
ADC/digital data.

232 WIRELESSLY NETWORKING PROPELLER CHIPS

The remote XBee is reading the ADC and digital channels specifi ed and sending a
packet containing the data. You will not see the LED blink on the sending XBee because
no communication enters or exits it through the serial port.

On the coordinator, when a frame with an identifi er of $83 (ADC/Digital data) arrives,
valid data is pulled out and displayed (nonenabled channels are −1).

PUB Start | channel
 ' Configure XBee & PC Comms
 XB.start(XB_Rx, XB_Tx, 0,9600)
 PC.start(PC_Rx, PC_Tx, 0, 9600)

 XB.AT_Init ' Fast config
 XB.AT_ConfigVal(string("ATMY"), MY_Addr)
 XB.AT_Config(string("ATAP 1"))' Switch to API mode

 PC.str(string("Coordinator in API mode ready at address:"))
 PC.dec(MY_Addr)
 PC.Tx(13)

 Repeat
 XB.API_Rx ' Wait for API data
 if XB.RxIdent == $83 ' If data identifier is a ADC/Dig data
 PC.Str(string(13,"Data Received from address: "))
 PC.DEC(XB.srcAddr)
 repeat channel from 0 to 6 ' Cycle through ADC channels
 if XB.rxADC(Channel) <> -1 ' Display if not -1
 PC.str(string(13,"ADC Ch:"))
 PC.dec(channel)
 PC.tx("=")
 PC.DEC(XB.rxADC(Channel))

 repeat channel from 0 to 7 ' Cycle through Digital channels
 if XB.rxBit(Channel) <> -1 ' Display if not -1
 PC.str(string(13,"Dig Ch:"))
 PC.dec(channel)
 PC.tx("=")
 PC.DEC(XB.rxBit(Channel))

 PC.str(string(13,"---------------------------------"))

If you were to use an analog accelerometer, you could read the accelerometer and a
digital pushbutton on the tilt controller and have the XBee send those values automati-
cally. Then the Propeller could accept data at the bot and process it for control action.
Or you may have an array of sensors in the area and collect data from them as they
wake, sample, send, and go back to sleep.

EXERCISE 233

This page intentionally left blank

235

6
DANCEBOT, A BALANCING ROBOT

Hanno Sander

Introduction
The Propeller’s multicog architecture allows you to tackle complex projects one step at a
time. A project that’s keeping me busy is my balancing robot that uses vision to interact
with people. In the next two chapters, I’ll describe how I built my robotic dance partner.
In this fi rst chapter, I’ll cover the basics of building a balancing robot:

■ The parts: Sensors, motors, and more
■ The code: Which way is up?
■ Achieving balance: How to avoid falling over
■ Steering a balanced robot

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_06.

The Challenge
Balancing robots make a great platform for mobile robots. They are highly maneuverable,
have great traction, and move more smoothly and naturally than other designs. Balancing
robots are mechanically very simple. They only have two wheels with which they move
through their environment. Each wheel is driven by its own motor, which makes the robots
highly maneuverable. Since the robots maintain their own balance, they can be quite tall while
maintaining a small footprint. They can turn on a dime, navigate precisely, and are a pleasure
to watch while they keep their balance. See Fig. 6-1 for a picture of my DanceBot and this
link for videos of the DanceBot in action: http://mydancebot.com/dancebot/videos.

http://mydancebot.com/dancebot/videos

236 DANCEBOT, A BALANCING ROBOT

Building a robot that balances and maintains position robustly in any environment is
not easy. Balancing robots are complex in that they require input from multiple sensors
and must react quickly to changing conditions. A related problem typically taught in
physics classes is the classic inverted pendulum problem. Unlike a normal pendulum,
which hangs downward and is stable, the inverted pendulum has its mass above the pivot
point and is, therefore, quite unstable. To keep the mass from falling, it must be actively
balanced by moving the pivot point horizontally as part of a feedback system. For our
balancing robot, we need a high-performance microcontroller to process the sensor
input and calculations. The Propeller’s multiple cogs allow you to split your complex
project into simple parts that can be built and tested one at a time.

We’re now blessed with wonderful hardware that makes it much easier and cheaper
to build a balancing robot. In the past, the necessary sensors, motors, and processing
power were more diffi cult to locate and expensive to buy. In particular, nanotechnology
and parallel processing have opened the doors to today’s balancing robots. Low-cost
accelerometers using nano-scale cantilevers, and small, solid-state ceramic gyroscopes
are readily available and easy to use. Being able to run multiple programs in their own
processor while sharing a global memory makes it easier to build and test the software
required for the robot.

The fun really starts when a balancing robot is combined with computer vision (see
the next chapter). Computer vision allows the robot to see the world and interact with it.
By tracking a target object, like a human, the balancing robot can literally dance with

 Figure 6-1 DanceBot balancing on two wheels.

THE CHALLENGE 237

its partner; it becomes a “DanceBot”! By being tall and maneuverable, the DanceBot
more closely resembles a dance partner than a four-wheeled car or stationary mecha-
nism. It can face its partner by turning on its axis and moving forwards and backwards
to maintain a desired distance. Interacting with a robot by dancing is more intuitive
and pleasing than using remote controls or, even worse, programming it. Even young
children can get in the action; see Fig. 6-2, in which my kids are interacting with my
DanceBot.

Like people, balancing robots continually move to stay balanced; they don’t stand
still. They continually move slightly forward and slightly back to keep from falling
over and to maintain to their desired position. They only stay still for the short time that
their center of gravity is perfectly positioned over their wheels’ contact point on a level
ground. This tendency to keep moving makes them great attention-getters. The human
vision system is particularly sensitive to things that move. This helped our ancestors
to survive by fi nding food and keeping us safe from predators. Now, advertisers use
this trait to their advantage by using blinking lights and images that move or change
over time. Builders of balancing robots can use it to their advantage, too, by drawing
onlookers wherever they go!

 Figure 6-2 Anja and Kyle with my DanceBot.

238 DANCEBOT, A BALANCING ROBOT

Building the DanceBot
Okay, let’s build our DanceBot. What will we need? I’ve experimented with many
designs and I’m happy with my setup (see Table 6-1). At some point, I’m planning to
build a kit that will make it easier for others to build their own robots; if you’re inter-
ested, look at my web site. The following sections will describe each subsystem of the
robot. I’ll start with an overview of the system and then get into the nitty-gritty details
of which part I used, how to interface it, and how the Propeller will use it.

MECHANICS—MAKE THE ROBOT MOVE

The mechanics of a balancing bot are simple: Two powered wheels control a rigid body.
For the body, we could use everything from erector set parts (like VEX) to a small sec-
tion of large-diameter transparent acrylic pipe (see Fig. 6-3 for inspiration). The pipe
solution looks clean and lets you keep all the electronics inside while still letting people
see what you’ve done. It’s also easy to drill mounting holes for the motors.

For the motors, we’ll use the Lynxmotion Geared Motor (GHM-16). It runs on 12
VDC and has a 30:1 metal gear for an impressive stall torque of 4.6 kg-cm. At 12 V, with
no load, it turns the axle at 200 RPM. This combination of high torque and good speed
enables your robots to recover from hard pushes or uneven terrain. Lynxmotion also
sells rubber wheels for this motor, so let’s use the 3.6 in diameter Dirt Hawg tires.

Before we dive into the details of the DanceBot, let’s look at an overview of how to allo-
cate the Propeller chip’s 32 I/O pins to the various sensors and actuators (see Table 6-2).
Luckily, the Propeller’s input and output pins are all general purpose. We can confi gure the
behavior of each pin through software.

TABLE 6-1 DANCEBOT PARTS

PART DESCRIPTION

Parallax Proto Board Prototyping board with Propeller, power supply
 circuitry, and crystal

GWS PG-03 Gyro Piezoelectric ceramic gyroscope

2* GHM-16 Motors Geared robot motor

LIS3LV02DQ Accelerometer

Acrylic tube Frame for the DanceBot

2*LMD18200 H-bridge motor controller

3.6 in diameter tires Robot tires

Motor Encoder QME-01 Quadrature encoder to sense position

12 V Battery Rechargeable battery to power motors and circuit

ViewPort Debugging environment

BUILDING THE DANCEBOT 239

TABLE 6-2 PROPELLER PINOUTS

PROPELLER I/O PIN PURPOSE

3, 4, 26, 27 Motor control: Drive 2 H-bridge chips with two pins to
 control the motor’s direction and speed.

12,13 Position: Read pulses from quadrature encoder to
 calculate position and speed of one motor.

6, 7 Accelerometer: Communicate with Accelerometer chip
 using I2C to measure acceleration.

5, 8 Gyroscope: Send and receive timed pulses to the
 gyroscope to measure the robot’s change in tilt.

30, 31 Serial communication: Allow ViewPort, running on the PC,
 to monitor and confi gure the robot.

28, 29 EEPROM: Read the robot’s program from the EEPROM.

19, 23, 24 Vision (see next chapter): Clock the ADC with a 10 MHz
 signal and read the digital representation of the
 camera’s signal.

Battery

Propeller

Motors

 Figure 6-3 DanceBot mechanics show-
ing frame, motors, and circuit board.

240 DANCEBOT, A BALANCING ROBOT

To control the direction of each motor, we’ll use an electronic circuit called an
H-bridge! The H-bridge applies voltage across the motor in either direction to drive
forwards, backwards, and even turn. Looking at Fig. 6-4, you’ll see why the circuit is called
an H-bridge: The four switches surrounding the motor resemble an “H.”! Let’s look at
what happens when we set the switches to different positions. When the switches S1
and S4 are closed and S2 and S3 are open, a positive voltage will be applied across the
motor. By opening the S1 and S4 switches and closing the S2 and S3 switches, this
voltage is reversed, allowing reverse operation of the motor. Switches S1 and S2 should
never be closed at the same time, as this would cause a short circuit on the input voltage
source. The same applies to switches S3 and S4.

To control the speed of the motor, we’ll use pulse width modulation (PWM). We
can’t directly tell the H-bridge to supply only half power to the motor because the
switches can only be turned on or off. However, we can tell the H-bridge when to turn
the switches on and for how long. So if we want to drive at half power, we can turn the
switch on for 50 percent of the time and later turn the switches off for 50 percent of the
time. The motors will average this out and drive the wheels at a medium speed.

The LMD18200 implements an H-bridge that can deliver up to 3 A of continuous output
at up to 55 V. It has a low on resistance of 0.3 Ω per switch and can be driven directly from
the Propeller’s outputs. Besides implementing an H-bridge, it also protects our robot with
an undervoltage lockout, an overcurrent detector, and a thermal shutdown. These features

 Figure 6-4 H-bridge schematic, showing four
switches controlling motor’s direction.

ensure that the robot won’t hurt itself, even if we make mistakes in our programming!!
We power the chip through a fuse from the batteries and connect the outputs to the motor
we wish to drive. To control it, we connect the “direction” and “pwm” input pins to the
Propeller pins designated as output pins for this motor; see Fig. 6-5 for a schematic. These
inputs determine the state of the switches in the H-bridge.

To continually drive the H-bridge, we’ll use the following assembly code. It runs in
its own cog and continually outputs confi gurable patterns to the output pins, which are
connected to the Propeller. Changing the output patterns and timing allows us to change
the direction and speed of the two motors.

 org
doPWM or dira,dirav
 loop mov ptr,par
 mov :i,#3
:duty rdlong orV,ptr 'Get value to or
 add ptr,#4
 mov :t,outa
 rdlong timeV,ptr 'Get wait
 add ptr,#4
 and :t,andV
 or :t,orV
 mov outa,:t
 add timeV,cnt
 waitcnt timeV,#0
 djnz :i,#:duty
 jmp #loop

BUILDING THE DANCEBOT 241

 Figure 6-5 Schematic showing the motor controller’s interface to the Propeller.

242 DANCEBOT, A BALANCING ROBOT

:t long 1
:i long 1
diraV long 1
andV long 1
ptr long 1
orV long 1
timeV long 1

To initialize the code that will drive our motors, we’ll use the following Spin code.
It initializes the output patterns, confi gures the DIRA register, and starts the previous
assembly code in a cog.

pub setupMotor
 'pwm is structure with bits to turn on, then duty for that pattern
 pwm[1]:=5
 pwm[3]:=5
 pwm[5]:=5
 diraV:=m1Dir|m1Pwm|m2Dir|m2Pwm
 andV:=!diraV
 cognew(@doPWM,@pwm)

To update the speed and direction of the two motors, we’ll use the following Spin
code. It limits the speed for each motor, sets the output patterns to turn the motors in
the specifi ed direction, and sets the time values to modulate the motors at the correct
speeds.

pub Update(speed,speed2)|p0,p2,t
 p0:=m1pwm+m2pwm
 if speed>0
 p0+=m1dir
 if speed2>0
 p0+=m2dir
 pwm[0]:=p0
 speed:= (||speed) <#MAXSPEED
 speed2:= (||speed2) <#MAXSPEED
 if speed > speed2
 p0-=m2pwm
 pwm[1]:=(speed2)+5 '2505
 pwm[3]:=(speed-speed2)+5 '2505
 pwm[5]:=5+(5000-speed) '15
 else
 p0-=m1pwm
 pwm[1]:=(speed)+5
 pwm[3]:=(speed2-speed)+5
 pwm[5]:=5+(5000-speed2)
 pwm[2]:=p0
 pwm[4]:=0

MEASURING POSITION—WHERE AM I?

In order to measure how far your robot has traveled, you’ll need a quadrature
encoder. A quadrature encoder is an electromechanical sensor that outputs two
pulse signals, which can be analyzed to determine how quickly and in which direc-
tion a wheel is moving. The sensor typically consists of a disk covered in black
and white stripes and two photo detectors that read the optical pattern coming
from the disk. Counting how many black/white transitions are made at a sensor
tells us how fast the wheel is turning. For example, if there are 100 black/white
lines on the disk, turning the disk by one rotation will produce 100 black/white
cycles. The photo detectors are offset by 90 degrees relative to each other; when
one sensor is on the middle of a black line, the other will be on the transition from
white to black (see Fig. 6-6 for an illustration). By looking at the relative phase
of the signals coming from the detectors, we’re able to determine if the wheel is
moving forwards or backwards. To balance my DanceBot, I use just one quadrature
encoder to measure the position of one of the wheels; this simplifies the control
logic. To track where the robot has traveled after it has made turns, you’ll need to
use an encoder on each wheel.

Lynxmotion sells the Motor Encoder QME-01, which registers 100 cycles per revolu-
tion. Since the encoder is mounted to the motor, you’ll get:

100 cycles/motor rev · 30 motor rev/wheel rev = 3000 cycles/wheel rev

On a 3.6 in diameter wheel, this means you get:

3000 cycles/π · 3.6 in = 265 cycles/in

This lets us measure both the speed and position of the wheel quite accurately.
In the real world, our wheel will slip and suffer from accumulated error as the
robot drives over different surfaces like linoleum and carpets, so we can’t actually
measure our actual position that accurately. When the wheels are turning at their
top speed of 200 revolutions/min, the processor will need to count and process

 200 RPM * min/60 s · 3000 cycles/revolution = 10,000 cps

BUILDING THE DANCEBOT 243

Encoder A

Encoder B

Time

 Figure 6-6 Quadrature encoder with disk and offset
detectors.

244 DANCEBOT, A BALANCING ROBOT

To measure these pulses, we’ll use the following assembly code to count pulses and
determine the relative phase of the signals from the photodetectors. The code uses bit
manipulation to determine which way each motor is turning.

Dat '
 org
count
 mov m2w,par
 add m2w,#4
 mov :t,ina 'Get ina- 1011
:loop ' 21 instr= 80 cnts=1Ms/sec
 and :t,mAEnc 't shows before flank, what A bits are
 waitpne :t,mAEnc 'Wait for encoder A bits to change
 mov :t1,ina
 and :t1,mABEnc 't1 shows after flank, what AB bits are
 mov :t2,:t1
 and :t2,mAEnc
 xor :t2,:t ' t2 shows which A bits changed
 mov :t,:t1 ' Get t ready for next measurement
 shr :t2,#12
 rcr :t2,#1 wc ' Check if A on motor 1 changed
 if_nc shr :t1,#14 ' Leave both t2, t1 shifted if take jump
 if_nc jmp #:doM2 '
 shr :t1,#12
 rcr :t1,#1 wc ' Check if A=1
 if_nc shr :t1,#1
 if_nc jmp #:doM2
 rcr :t1,#1 wc ' Check fwd/bkw on motor 1
 rdlong m1Cnt,par
 if_c add m1Cnt,#1
 if_nc sub m1Cnt,#1
 wrlong m1Cnt,par
 'Ready to do motor 2, t1 shifted 14, t2 shifted 13
:doM2
 shr :t2,#9
 rcr :t2,#1 wc ' Check if A on motor 2 changed
 if_nc jmp #:loop
 shr :t1,#8
 rcr :t1,#1 wc ' Check if a=1
 if_nc jmp #:loop
 rcr :t1,#1 wc ' Check if fwd/bkw on motor 2
 rdlong m2cnt,m2w
 if_nc add m2Cnt,#1
 if_c sub m2Cnt,#1
 wrlong m2Cnt,m2w
 jmp #:loop
:t2 long 1
:t1 long 1

:t long 1
m2W long 1
mAEnc long %0100_0000_0001_0000_0000_0000 '12
mABEnc long %1100_0000_0011_0000_0000_0000' 12,13 '00011
m1Cnt long 0
m2Cnt long 0

The code object that we will use to both drive and measure the motor is motor.spin.
It lets us control the motor’s speed and direction, and keeps track of where the wheel
is using the pulses from the quadrature encoder.

MEASURING TILT—WHICH WAY AM I FALLING?

We humans have an inner ear that tells us which way we’re tilting. This mechanism
relies on fl uid moving in a channel, where it is sensed by small hairs. When we drink
alcohol, the alcohol changes the properties of the ear’s fl uid and our sense of balance
is affected. Apart from this, our sense of balance is good and helps us to balance quite
well. A good sense of balance, or rather, a sensor that will tell us which way we’re tilt-
ing, is critical to building a robust balancing robot. How do we best teach our robot to
measure its tilt?

One technique is to measure the distance to the ground from a sensor offset from
the wheels. Measuring the distance can be done either using ultrasound or measuring the
amount of light refl ected from a beam. This can work in some environments, but the
surface has to be absolutely fl at; otherwise, the robot will fall because it’s not able to
accurately measure which way is down.

The approach that most resembles that of the human ear are various inclinometers.
These range from mercury-fi lled glass tubes to pendulums, which all use the earth’s
gravity to determine which way is down. All these devices work by measuring the
acceleration of gravity. Recently, small micro electromechanical systems (MEMS)
accelerometers have become available to the hobbyist. MEMS accelerometers use a
small cantilever beam with a known mass to measure the direction of a force by sensing
how the cantilever bends (see Fig. 6-7). They’re a single-chip solution, which means
they’re small and inexpensive. The one problem with all these “inclinometers” is that
on a moving robot, gravity is not the only acceleration. When the robot speeds up, is
bumped, or drives over a rough surface, the acceleration due to gravity might be small

BUILDING THE DANCEBOT 245

Capacitative

Sensor

Force

Mass
 Figure 6-7 Mechanics of a
MEMS accelerometer showing
cantilever sensor.

246 DANCEBOT, A BALANCING ROBOT

relative to the other forces. Averaged out over a long time, these devices may be accu-
rate, but for short periods in a moving vehicle, their output isn’t accurate enough for a
balancing robot.

Gyroscopes don’t directly measure tilt, but are great for accurately measuring the
change in tilt of an object. Traditionally, gyros had a spinning disk gimbaled inside an
enclosure. The disk remains in the same orientation even when the sensor is rotated
about an axis. By monitoring the position of the disk, the sensor can determine changes
in orientation. This technique is accurate, but the implementation is typically large and
complex. Recently, piezoelectric technology has dramatically simplifi ed these sensors.
Modern devices rely on the same gyroscopic physics, but instead of depending on a
spinning disk, they vibrate a piezoelectric material. Similarly to rotating gyroscopes,
the vibrating object tends to keep vibrating in the same plane as it is rotated. This is
measured electronically and yields an inexpensive but accurate sensor for measuring
change in tilt.

We can try to calculate tilt by integrating the change in tilt measured by the gyroscope
sensor. This will work for a while, but our calculation will drift, as the sensor’s value
isn’t perfect. When we integrate the sensor’s value, we also integrate any error, and
this will add up quickly and make our result meaningless. So, at this point we have two
sensors that are great for measuring tilt and change in tilt under special conditions. The
MEMS accelerometer is great for measuring tilt over long periods, and the piezoelectric
gyroscope is great for measuring rate of tilt over short periods. What to do?

Luckily, a mathematical function exists that’s appropriate especially for this case.
The Kalman fi lter can be used to “fuse” the raw sensor readings from the gyroscope and
the accelerometer to produce clean tilt measurements. The complete theory behind the
Kalman fi lter is beyond the scope of this book, but let’s look at the basics. According
to Wikipedia: “The Kalman fi lter is an effi cient recursive fi lter that estimates the state
of a linear dynamic system from a series of noisy measurements.” (http://en.wikipedia.
org/wiki/Kalman_fi lter)

What does this mean? Being an “effi cient recursive fi lter” means that the algo-
rithm processes signals to accentuate the good while reducing the bad. Recursive
fi lters have an internal state that is updated every timestep. “Estimating the state of a
linear dynamic system from a series of noisy measurements” means that the Kalman
fi lter’s internal state is an estimate of a system that is linear and dynamic. In our
case, the two inputs are from a linear and dynamic system—one (the change in tilt
as measured by the gyroscope) being the derivative of the other (tilt as measured by
the accelerometer). A good analogy is that the Kalman fi lter automatically selects
the fi lter values so that the low-pass fi ltered accelerometer measurement corresponds
with the high-pass fi ltered gyroscope measurement. So, we can use the Kalman
fi lter to fi lter and fuse our noisy signals to estimate the state of our system—we can
accurately calculate tilt from our signals!

For our code, we have to understand that we need to run the Kalman fi lter continually
and that it runs in two phases: predict and update. During the predict phase, the state
estimate from the previous timestep is used to produce an estimate of the state at
the current timestep. So it’s predicting the current state from the last state. In the update

http://en.wikipedia.org/wiki/Kalman_filter
http://en.wikipedia.org/wiki/Kalman_filter

phase, measurement information at the current timestep is used to refi ne this prediction
to arrive at a new, more accurate state estimate, again for the current timestep. For the
math wizards, here’s the formula:

xk = Fkxk-1 + Bkuk + wk

where Fk = state transition model, which is applied to the previous state xk − 1
 Bk = control-input model, which is applied to the control vector uk

 wk = the process noise, which is assumed to be drawn from a zero-mean
multivariate normal distribution with covariance Qk

Now that we’ve understood the theory, let’s look at the actual devices and code that
we’ll be using. The GWS PG-03 is an inexpensive hobby gyroscope that’s typically
used to stabilize small remote control helicopters. It has two servo connectors. The fi rst
is typically plugged into an RC receiver, from which it gets a pulsed signal that indi-
cates the desired position for the servo. The second connects to the servo and provides
a pulsed signal whose length is the sum of the input signal and the measured signal.
For our application, we’ll feed it with a constant input signal and measure the signal
on the output. This is straightforward for the Propeller. The following code outputs a
confi gurable signal on the gyro’s input pin and uses CTRA to measure the length of the
gyro’s output signal.

Con
 gyroOutP =5
 gyroInP =8
pub doGyro(gyroTime)
 dira[gyroOutP]~~
 ctra := (%10101 << 26) | (%001 << 23) | GyroInP
 'set up counter for gyroin, measured lag till pulseout
 frqa:=2
 repeat
 outa[GyroOutP]~~
 phsa~
 GyroDone:=cnt+gyroTime
 waitcnt(GyroDone)
 outa[GyroOutP]~
 gyro:= (phsa-gyroOffset)

For our accelerometer, let’s look at the LIS3LV02DQ, a three-axis +/−2 g digital
MEMS Linear Accelerometer. It’s a low-cost sensor that uses multiple miniature cantile-
vers to measure acceleration in three axes. It runs on 2.16 to 3.6 V and uses the common
I2C or SPI serial protocols for communication. Since it is digital, we just need to provide
it with power and ground and two lines to the Propeller for communication. To use it,
we need to fi rst initialize several control registers that set various fi lters and ranges, and
then we query it periodically to read the accelerometer’s values. Here’s the Spin code,
which uses James Burrows’ i2cObject from the Propeller Object Exchange:

BUILDING THE DANCEBOT 247

248 DANCEBOT, A BALANCING ROBOT

'init accelerometer
 a:=i2c.Init(accelSDAP, accelSCLP, true)
 i2c.writeLocation(ACC3D_Addr,$20,%1101_0111 ,8,8)
 'ctrl_reg1 :power on, 160hz, no self test, all axis on
 i2c.writeLocation(ACC3D_Addr,$21,%0010_0000 ,8,8)
 'ctrl_reg2 :2g, update continuously, big endian, no boot, 12bit
 i2c.writeLocation(ACC3D_Addr,$22,%0000_0000 ,8,8)
 'ctrl_reg3 :no filters
 repeat
 a:=i2c.readLocation(ACC3D_Addr,$28 ,8,8)<<8 'outxh
 a+=i2c.readLocation(ACC3D_Addr,$29 ,8,8) 'outxl
 if a>32000
 accel:=800*(a-65536)
 else
 accel:=800*a
' Excerpt from i2cobject.spin Copyright (c) 2006 James Burrows

The code object that we will use to measure tilt for our robot is called tilt.spin. It
measures the gyroscope and accelerometer sensors, and fuses the result with a Kalman
fi lter, which is implemented as fi xed-point math in Spin code. See Fig. 6-8 for a sche-
matic on how to connect the accelerometer and gyroscope to the Propeller.

FUZZY LOGIC CONTROL–THE BRAINS

I’ve spent a lot of time optimizing the DanceBot’s control logic. At the highest level,
the problem is quite simple: We steer and the robot balances. Our high-level interface

 Figure 6-8 Schematic of tilt circuit.

should be as simple as those of a car’s remote control, requiring us to provide just the
speed and steering inputs. The robot should do all the hard work of analyzing inputs
and adjusting the speeds of the two motors. However, a balancing bot drives differently
from a car; steering is easier, while managing speed is much more diffi cult.

Let’s start by seeing what we need to do to steer the robot. Since the robot has two
wheels, we can drive the wheels at different speeds to steer it. This is similar to how
tanks are steered and controlled. If we speed up the left wheel while slowing the right
wheel, our robot will turn to the right without affecting the bot’s balance. This differ-
ential steering can be carried so far that we’re driving one wheel forward and the other
backwards, resulting in the bot spinning about its own axis.

Accelerating a balanced robot to a new speed is more complex than it fi rst appears.
Let’s start with a simple experiment. Balance on your toes and try to run. Most people
will slowly lean forward and only start running when their body is tilted to a certain
angle. If we started running right away, we would fall backwards because our feet would
be too far in front of our center of gravity. Decelerating to a stop requires you to run a
bit faster until you’re tilted backwards, at which point you can gradually slow down.
If your legs were stopped suddenly because they were “tripped,” you would fall. For a
balancing robot, things get even more complicated because the robot has no heel with
which to start a lean and can’t move its upper body to change its center of gravity. The
only thing the bot can do is drive its wheels. So to lean forward in order to move for-
wards, the robot fi rst has to drive backwards! Similarly, when the robot wants to slow
down, it fi rst has to speed up to lean itself backwards. Controlling these complicated
motions requires a sophisticated control algorithm.

Fuzzy logic has received somewhat of a bad rap because it was once hyped as the
silver bullet to all problems. It’s not a silver bullet, but it makes some things easier,
especially confi guring a complex control function with human intuition. We’ll use fuzzy
logic to create smooth, continuous mapping functions defi ned by just two setpoints
that relate the variable being mapped to human concepts. Figure 6-9 shows a simple
fuzzy mapping function that is used by DanceBot to monitor its speed. The input to the
function is a real number—in this case, the bot’s measured speed. The output is a set
of fi ve numbers, indicating membership in each of fi ve speed classes: fast-backwards,
slow-backwards, stopped, slow-forwards, and fast-forwards. While different people
might have different defi nitions for the “fuzzy speed classes” mentioned, we all have a
good idea what they mean. It’s also quite easy to talk logically about fuzzy classes—for
example, “If you’re falling forward fast, you need to drive forward fast.” Fuzzy logic
allows us to tune the bot with just two numbers per transfer function: the setpoints for
“slow” and “fast” in the previous example. The resulting function will be continuous,
without sudden jumps, and will gracefully top out at the maximum values, all without

BUILDING THE DANCEBOT 249

Speed = 17 10 30

 Figure 6-9 Fuzzy mapping function to translate speed to
“fuzzy speed classes.”

250 DANCEBOT, A BALANCING ROBOT

cluttering our code with a slew of if statements. ViewPort comes with a fuzzy logic
object called fuzzy.spin, which implements a complete fuzzy logic engine, and a control
panel, which graphically displays the transfer functions and rule maps.

Now that we’ve understood enough about fuzzy logic for our application, we need
to understand one more concept to build our balancing bot controller: the cascading
PID loop. Basic PID (proportional–integral–derivative) controllers attempt to correct
the error between a measured variable and a desired setpoint by calculating and then
outputting a corrective action that adjusts the process to minimize the error. The PID
controller has three parts that are summed to yield the output. The proportional part
makes changes proportional to the error. The integral part eliminates the residual steady-
state error in the system, but might lead to overshoots. And fi nally, the derivative part
reduces the magnitude of overshoot and improves stability, but is sensitive to noise in
the input signal.

In a cascading PID control, two PIDs are arranged with one PID controlling the set
point of another. In our case, the outer loop controller will control the speed of the bot,
while the inner loop controller, which reads the output of the outer loop controller as a
setpoint, controls the speed of the motors driving the wheels. This type of control logic
will let our bot achieve two goals: driving to a specifi ed location and staying upright
while only using one output, and driving the wheels a certain speed. See Fig. 6-10 for
a diagram of the control logic.

The following Spin code implements the hybrid fuzzy logic cascading PID controller
that keeps the bot balanced and allows us to steer and drive it like a car. It starts out by
calculating the position error (posE) by subtracting the target position from the mea-
sured position. By minimizing this error with the top-level PID controller, we’ll keep
the bot on the desired position. The posE is then fuzzifi ed into fi ve values stored in the
A register of the fuzzy logic engine using the position error map. By defuzzifying this
register with the velocity map, we get a target velocity (velT), which is proportional to

 Figure 6-10 Diagram of DanceBot’s control logic showing cascading
PID controller.

the position error. We also defuzzify the A register using the tilt map. This yields an angle
that’s proportional to position error, which we’ll use later as the derivative signal for
the inner PID control. Calculating the velocity error (velE) from the measured velocity
and target velocity (velT) is a straightforward difference. We fuzzify that result with
the velocity map and defuzzify the result with the tilt map to get t2. Now we come to
the top PID controller, where we use t1, t2, and tilt to calculate a target tilt for the
inner PID controller. For the inner PID controller, we can calculate the proportional tilt
error (tiltE), the integral tilt error (tiltI), and use the gyroscope (turn) signal as the
derivative tilt error. Finally, we can calculate the output to drive the motor by summing
the PID components of the inner controller.

posE:=-pos+posT 'posE=positive if on right of target
 f.fuzzifyA2(posE,FposE) 'A=fuzzy posE
 velT:=-f.defuzzify2(FvelT) 'velT=positive if need to move right
 t1:=f.defuzzify2(FtiltT)
 velE:=vel-velT 'velE=positive if going slower than target
 f.fuzzifyA2(velE,FvelE) 'A=fuzzy velE
 t2:=f.defuzzify2(FtiltT)
 '-t1-t2 is a pi controller, need d which is acceleration, use tilt
 tiltT:=-t1-t2-tilt/6
 f.share(@fuzz)
 tiltE:=tilt-tiltT 'tiltE=positive if tilted right of target
 tiltI+=tiltE/200 'tiltI=positive if tilted right for too long
 tiltI:= (tiltI<# maxTI) #> -maxTI
 f.fuzzifyA2(tiltE,FtiltE) 'A=fuzzy tiltE
 t1:=f.defuzzify2(Fmotor)
 f.fuzzifyA2(turn,Fturn) 'A=fuzzy turn=positive if turning right
 t2:=f.defuzzify2(Fmotor)
 motor:=-t1-t2/2'+tiltI/1500

ACHIEVING BALANCE WITH VIEWPORT

Parallax built a great tool to load programs written in assembly or high-level Spin
language to the Propeller. This is fi ne for getting started writing simple programs, but I
quickly determined that I needed a more powerful debugging tool to develop and con-
fi gure my robot. This led me to develop an application I now call ViewPort. I started
by dedicating one of the eight cogs to continuously share data stored in the Propeller’s
memory with a PC application. This let me monitor and change variables, all while the
other seven cogs were running at full speed. When I added a module that sampled
all 32 I/O pins at 80 MHz, other hobbyists became interested in using my application
to debug their integration code, and ViewPort was born. Since then I’ve added other
capabilities to the ViewPort application to turn it into a complete debugging package.

In other parts of the book, you’ll see how you can use ViewPort to debug Spin pro-
grams with its visual debugger, how to stream video to debug computer vision problems,
and how to use the virtual instruments to measure signals. In this section, we’ll use

BUILDING THE DANCEBOT 251

252 DANCEBOT, A BALANCING ROBOT

ViewPort to make sure all parts of our robot are working correctly before we put it all
together to start balancing. First, refer to Fig. 6-11 to see how all the pieces fi t together.
The diagram shows ViewPort graphically showing the state of the system on a PC. It’s
connected to the Propeller with a serial connection, where data can be sent to or from
the bot. The Propeller is running code that we’ve discussed in this chapter on six of the
eight available cogs. The “Motor” cog continually outputs direction and pulse width
modulation data to the H-bridges to drive the motor, while the “Position” cog continu-
ally runs code from the motor.spin object to track where the robot is by monitoring
the quadrature encoder. The “Kalman” cog continually reads the accelerometer and
fuses this measurement with the gyroscope reading with a Kalman fi lter to produce a
clean and steady tilt measurement. Finally, the “Conduit” cog sends data to and from
ViewPort, while the “Spin” cog executes the main fuzzy logic code to keep the robot
balanced. Now that we understand the system, let’s take some measurements.

Let’s start by looking at the states of the Propeller’s I/O pins using ViewPort’s LSA
view. Since the Propeller’s I/O pins are connected to sensors and actuators, looking at
their state will tell us the raw signals that are sent to and from the Propeller. Refer to
Fig. 6-12 to see 10 traces, which represent the communication with the accelerometer,
gyroscope, motors, and encoders. The accelerometer clock (acCL) trace shows the
pulses used to clock the data coming and going to the accelerometer over the accelerom-
eter data (acDT) line using the I2C protocol. Notice that multiple bytes are transmitted

 Figure 6-11 System diagram with ViewPort, DanceBot, and six active cogs.

to/from the accelerometer to fi rst query and then read in the two bytes of the sensor.
The gyro out (gyrOT) trace shows the pulse output to the gyroscope, which is returned
slightly later in the gyro in (gyroIn) trace. As the bot is rotated, this signal gets both
longer and shorter. The next four traces (m1p, m1r, m2p, m2r) are the direction and
pulse width modulation lines used to control the two motors. And fi nally, the encoders
(encA, encB) show the pulses received from the quadrature encoder; remember their
frequency and phase tells us how quickly and in which direction the wheel is turning.

Refer to the Fig. 6-13 to see the sensors and the Kalman fi lter in action. The screenshot
of ViewPort’s oscilloscope shows the values of three variables while I tilt the DanceBot
back and forth. The blue trace shows the raw signal from the gyroscope—it’s a clean
signal that indicates how quickly I’m rotating the bot—and the signal is highest when
the bot is being turned. The red trace shows what happens when I integrate the signal

BUILDING THE DANCEBOT 253

 Figure 6-12 ViewPort measurement of input/output signals.

254 DANCEBOT, A BALANCING ROBOT

from the gyroscope; here, the signal is highest when the bot is turned all the way to one
extreme. At fi rst, the red trace accurately refl ects the bot’s tilt. However, over time, the
integration errors add up and the signal has drifted so far as to be useless. The green
trace shows the raw signal from the accelerometer—notice how noisy it is because it’s
continually registering small accelerations. However, averaged over time, it accurately
indicates which way the bot is tilted. The purple trace is the output of the Kalman fused
signal. It’s clean and doesn’t drift over time, perfect for controlling our robot.

Ensuring that both of these fi gures are correct helps us confi rm that the robot is work-
ing correctly. With something this complex, it’s almost impossible to track down the
source of a problem to a loose wire if we don’t have a tool that shows us what’s going
on! Now that our robot is wired correctly and we’ve confi rmed that our sensors and
calculations are correct, let’s see the robot balance.

 Figure 6-13 ViewPort measurement of the tilt system.

Controlling the DanceBot
The DanceBot is controlled like a car: It requires two channels of information. Channel 1,
speed, controls how fast the bot should travel. Channel 2, turn rate, controls how quickly
the bot should turn about its own axis. DanceBot manages its two motors to stay bal-
anced and to achieve the desired input. Unlike a car, the bot is capable of turning in
place. At fi rst, I controlled my robot with remote control to get the hang of it. It took me
much longer to get it to drive programmatically to where I wanted. Here’s some code
that continually drives the robot in a fi gure 8 by driving at a set speed while turning in
one direction and then the other.

repeat
 repeat 200
 bal.do(10,10,0)
 repeat 200
 bal.do(10,-10,0)

I quickly realized that while programming the DanceBot to move by itself was fun, it would
be much more fun if it could interact with others as well just by watching what they were
doing. Read the next chapter to fi nd out how I added computer vision to my DanceBot.

Summary
Although the DanceBot is quite complex, the Propeller’s multicog architecture makes
it easy to understand, build, and debug each of the bot’s subsystems one at a time. In
this chapter, we’ve integrated powerful sensors to the Propeller to measure the robot’s
position and orientation in the world. Coupled with our control logic, we were able to
build a robot that balanced itself while we steered it like a normal RC car. In the next
chapter, we’ll add computer vision capabilities to the robot to make it interactive.

Exercises
In this section, we are going to explore a number of exercises with the Propeller-
powered balancing robot.

1 Try changing the center of gravity of the robot. What happens when the center of
gravity is made higher, for example, by attaching a heavy weight to the top of the
bot? Does this make balancing easier or harder?

2 Try using different wheels on different surfaces. What happens when the robot’s
contact area with the ground gets smaller or larger?

3 Try running the robot up and down inclined surfaces. Does the robot stay balanced?
Why?

EXERCISES 255

This page intentionally left blank

257

7
CONTROLLING A ROBOT WITH

COMPUTER VISION

Hanno Sander

Introduction
The Propeller is powerful enough to capture and analyze video. In this chapter, I’ll look
at two vision technologies that can control a robot with computer vision. Here’s what
we are going to cover in this chapter:

■ Computer vision: Seeing and understanding the world one pixel at a time
■ Using computer vision in our robot to interact with people
■ Developing a vision engine that runs on the Propeller: PropCV
■ Integrating with OpenCV for state-of-the-art computer vision

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_07.

VISION-GUIDED ROBOTS

It’s time to build more sophisticated robots. With today’s technology, our robots should
no longer require us to program their every move or steer them via remote control.
Instead of stumbling through the world with touch or proximity sensors, our robots
should stand up and watch where they’re going. The future of vision-guided robots is
bright. Let’s see how we’ll get there.

The Propeller provides a great entry into vision-guided robots. It’s powerful enough
to process video and has enough memory to perform simple vision algorithms. But

258 CONTROLLING A ROBOT WITH COMPUTER VISION

most importantly, it’s easy to integrate with all sorts of robotic sensors and actuators.
The Parallax community has written Propeller objects for almost anything you would
want to interface with. Integration is typically as simple as downloading an object and
running the code in one of the Propeller’s eight cogs. Once you’ve confi gured your
robot, adding vision capabilities is a matter of choosing how much sophistication you
require. ViewPort’s PropCV vision engine provides simple vision capabilities and runs
on as little as one of the Propeller’s cogs. Yet, the OpenCV vision engine integrated into
ViewPort gives you access to state-of-the-art computer vision—recently used to win
the Defense Advanced Research Projects Agency (DARPA) competition by guiding a
car autonomously through an urban setting.

Understanding Computer Vision
A touch sensor is easy to understand. When something touches the sensor, the switch
closes and the robot can react to that event. A vision sensor is a bit more complex. First,
the robot’s camera, or set of cameras, needs to image the environment by focusing and
registering the incoming light and turning it into a video signal. The video signal is
digitized and stored in the processor’s memory. Vision fi lters are applied in a vision
chain to analyze the scene. At the end of the vision chain, the large amount of incom-
ing video data has been processed into the nugget that tells the robot what it needs to
know. See Fig. 7-1 for a diagram. For example, the robot can sense the location of a
guide pattern, the presence of an obstacle, or even the location of a beer bottle. Once
the location or presence of the desired object has been calculated, the robot can react
appropriately—for example, drive to the beer bottle and pick it up with its gripper.
Central to this whole process is the design of the vision fi lters.

Users familiar with photo-editing software like Adobe Photoshop have plenty of
experience with fi lters. In Photoshop, I can apply the “brighten” fi lter to make my image
brighter. So how does the program accomplish this behind the scenes? The picture is

 Figure 7-1 In a vision sensor, video is fi ltered to yield a
nugget, which controls the robot.

PROPCV: A COMPUTER VISION SYSTEM FOR THE PROPELLER 259

made up of many individual pixels, thousands in each row with thousands of rows. Each
pixel has a color that’s specifi ed by some number of bytes. For example, a 24-bit color
image might use one byte to specify how red the pixel is, one byte to specify how blue,
and one byte to specify how green for a total of three bytes. When the “brighten” fi lter
is applied, the individual bits in each byte of every pixel are manipulated to make the
image brighter—for example, by adding a value to each byte.

In computer vision, fi lters have to be applied continually, ideally as fast as new images
come from the robot’s camera. This can require signifi cant computer processing power
and memory to manipulate all the bytes that make up each image. Also, while it’s easy
to code a fi lter that will brighten an image, designing a fi lter that will fi nd a bottle of
beer in a cluttered room is much more diffi cult.

Decades of research have been spent trying to understand how the human brain
processes vision. We’ve learned that the brain’s vision system has many parts, each of
which is specialized for some task. For example, some cells in our eyes are active only
when we’re looking at lines at a certain angle, and further along the chain, neurons are
arranged to decode three-dimensional information from our two eyes. Some researchers
have even found a neuron that recognizes just the subject’s grandma! Almost half of the
human brain is dedicated to processing vision. It takes that much processing power to
do what we take for granted. Luckily, modern desktop computers and even the Propeller
are getting to the point that we can apply them to computer vision.

PropCV: A Computer Vision
System for the Propeller
In the next sections we’ll build a complete computer vision system that will run entirely
inside the Propeller. I originally built PropCV so that my kids could dance with my
DanceBot, but it’s now a part of ViewPort, so people can use it for all sorts of projects.
One of my customers is even working on a project to make industrial robots weld more
accurately. So, what’s involved? We’ll start by building a frame grabber to digitize video
from a camera for storage in the Propeller’s main memory. Then, we will continue by
building different fi lters to process the video and recognize different objects.

FRAME GRABBER

I designed PropCV to work for any video source that can output a National Television
System(s) Committee (NTSC) composite signal, which makes the solution highly
fl exible. I used a $20 grayscale camera that fi ts on my fi ngertip, while others use
professional-quality camcorders with autofocus and a servo-driven zoom lens. I have
chosen the C-Cam-2A camera for the DanceBot. It measures just 16 × 16 × 16 mm, uses
less than 100 mW at 5 V, and only has one option: the gamma setting. (See Fig. 7-2 for
the complete vision hardware for my robot.) The output signal consists of a 1 V peak-to-
peak composite video signal when terminated into 75 ohms. Like other NTSC composite

260 CONTROLLING A ROBOT WITH COMPUTER VISION

sources, you can watch the camera’s output on your TV by simply connecting it to the
composite. Teaching the robot to understand what the camera sees is a bit harder, so
we’ll take it one step at a time.

To start, we have to digitize the analog signal. To sample slower waveforms with
the Propeller, you would use delta-sigma modulation with a capacitor and resistor, but
since we need to resolve the individual pixels in a frame, we need a faster solution. The
ADC08100 is a 20–100 Msps, eight-bit analog-to-digital converter. Given the correct
clock signal, it will output the digital equivalent of the input analog voltage on its eight
digital data outputs. We’ll use one of the Propeller’s 16 hardware counters to clock the
ADC at 10 MHz and read the result on pins 0..7 (see Fig. 7-3 for the schematic).

 Figure 7-2 C-Cam 2A grayscale camera
and ADC.

 Figure 7-3 PropCV schematic showing camera, ADC, and Propeller interface.

PROPCV: A COMPUTER VISION SYSTEM FOR THE PROPELLER 261

Now that we’ve fi nished our vision hardware, we can use ViewPort to verify that the
camera and ADC are working. We’ll use a short Spin program to generate a 10 MHz
clock signal for the ADC and use the QuickSample object to quickly sample the INA
register. Our ViewPort confi guration tells ViewPort to decode the ADC’s digital data
stream and show an analog presentation within ViewPort on a 50 µs timescale.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
OBJ
 vp : "Conduit" 'Transfers data to/from PC
 qs : "QuickSample" 'Samples INA up to 80MHz
 Freq : "Synth"
pub demoADC|a,frame[1600] 'Frame stores 1600 samples+configuration
 vp.register(qs.sampleINA(@frame,1))
 vp.config(string("var:io,adc(decode=io[0..7])"))
 vp.config(string("dso:view=adc,trigger=adc<15,timescale=50us"))
 vp.share(0,0)
 Freq.Synth("A",8, 10_000_000) "Drive ADC with 10MHz clock
 repeat

Refer to Fig. 7-4 for the waveform we’ve captured from the camera. The waveform
represents one of the 425 scan lines. The signal starts with a horizontal sync pulse fol-
lowed by the NTSC color burst and then 50 µs of data. In an NTSC signal, the begin-
ning of a frame is indicated by a vertical sync, where the signal is at its minimum for a
specifi ed time. Each scan line is marked by a horizontal sync, where the signal is also
at its minimum, but for a shorter time than the vertical sync. We won’t worry about
the color burst signal, as PropCV will only decode the grayscale information, not the
color. The 50 µs of data represent the pixel’s brightness by the reconstructed analog
signal value. The peak in the analog signal indicates a bright object in the middle of
the camera’s view.

The following assembly code implements a simple, low-resolution frame grabber.
It detects the horizontal and vertical sync marks and then packs the pixel data into
memory. It captures 100 lines of video, each with 120 pixels with 16 gray levels. This
consumes quite a bit of the Propeller’s 32 KB of RAM:

100 lines · 120 pixels/line · 4 bit/pixel · 1 byte/8 bit = 6000 bytes or 1500 longs

We can distinguish between vertical and horizontal sync marks by the different
amounts of time that the signal stays at its minimum. After detecting a vertical sync
mark, the code initializes a new frame and processes every other video line. It detects
the horizontal synch, skips past the color burst, and then samples the ADC’s value every
eight instructions. To store the pixels effi ciently into memory, we pack eight 4-bit pixel
values in a 32-bit long into the Propeller’s global memory, which is accessible by all
other cogs.

262 CONTROLLING A ROBOT WITH COMPUTER VISION

doLoFrame mov pixPtr,par 'Start new frame
 call #findVSync 'Find vertical sync
 mov fieldCtr,#100 '15longs/line*100lines=1500 longs
:sampleField mov lineCtr,#15 '15 longs*8=120 samples
 call #findHSync 'Find horizontal sync twice to skip a

 line
 waitcnt sB,#0
 call #findHSync
:sampleLine mov sb,#7 'Pack 8 pixels/long
 mov sL,#0

 Figure 7-4 NTSC waveform captured by the Propeller.

:sample8Pix
 mov sA,ina '8 instr/pixel
 and sA,video
 add sL,sA
 ror sL,#4
 nop
 nop
 nop
 djnz sb,#:sample8Pix
 mov sA,ina
 and sA,video
 add sL,sA
 ror sL,#4+VIDEOSTART
 wrlong sL,pixptr
 add pixptr,#4
 djnz lineCtr,#:sampleLine
 djnz fieldCtr,#:sampleField
doLoFrame_ret ret
findVSync
 waitpeq syncval,sync 'Wait for sync
 mov sA,cnt
 waitpne syncval,sync 'Wait for exit
 mov sB,cnt
 sub sB,sA
 cmp sB,vSync wc 'c set if sEnd-sStart<vsync
 if_c jmp #findVSync
 mov sB,cnt
 add sB,vblank
 waitcnt sB,cycPline
findVSync_ret ret
 findHSync
 waitpeq syncval,sync 'Wait for sync
 mov sA,cnt
 waitpne syncval,sync 'Wait for exit
 mov sB,cnt
 sub sB,sA
 cmp sB,hSync wc 'c set if sEnd-sStart<hsync
 if_c jmp #findHSync
 mov sB,cnt
 add sB,burst
 waitcnt sB,cycPline
findHSync_ret ret

The following Spin code uses the PropCVCapture object in HIVIDEO mode to con-
tinuously sample video from the camera at 30 fps with a resolution of 240 pixels · 200 lines ·
4 bit/pixel. This uses even more memory, but provides a sharper image:

200 lines · 240 pixels/line · 4 bit/pixel · 1 byte/8 bit = 24,000 bytes or 6000 longs

PROPCV: A COMPUTER VISION SYSTEM FOR THE PROPELLER 263

264 CONTROLLING A ROBOT WITH COMPUTER VISION

The program uses the Conduit object to stream the video to ViewPort, where I can
watch the camera’s output, look at horizontal and vertical scan lines, and measure the
value of individual pixels. See Fig. 7-5 for our fi rst picture of the world!

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
OBJ
 vp : "Conduit" 'Transfers data to/from PC
 video: "PropCVCapture" 'Capture video signal
pub watchTV|videoFrame[6000],a,blob
 vp.register(video.start(@videoFrame,video#HIVIDEO))
 vp.config(string("start:video"))
 vp.share(@blob,@blob)
 repeat

 Figure 7-5 Picture imaged by the PropCVCapture object.

Apply Filters and Track a Bright
Spot in Real Time
Now that we can digitize video from a camera into the Propeller’s memory, we need
to do something useful with it. We have quite a bit of video data updated at 30 times
a second. We need to fi lter this information to provide us with just two variables to
control our robot.

 We’ll start by implementing a fi lter that identifi es the location of the brightest spot in
each frame of video. The following assembly code is passed some confi guration about
the location and size of the video to fi lter and then searches for the maximum value
in our array of pixel-brightness values. Since our frame grabber has packed 8 four-bit
pixels into each 32-bit long, we need to make sure to look at each individual pixel by
fi rst decoding it. This fi lter processes one pixel every fi ve instructions. The fi lter pro-
cesses only data, not sync marks or color bursts, so let’s calculate if it’s fast enough to
process the incoming data.

1 pixel/5 instructions · line/120 pixels · frame/100 lines · 20 M instructions/sec
= 333 frames/sec

New frames are only coming in at 30 fps, so the Propeller is fast enough to apply
multiple fi lters to incoming video in real time.

doMax
'setup ptrs to positions
 mov dnp,src ' src points to first pixel
 add dnp,bytesNline 'dnp is one row below src
 sub n,#15 'Number of pixels to inspect
 mov dest,#0 'Location of pixel
 mov sum,#0 'Brightest value so far

:loop rdlong old,src
 add src,#4
 rdlong dn,dnp
 add dnp,#4

 mov m,# 8
 mov new,#0
:dodiffb mov tmp,old
 and tmp,#15 'Decompress 4 bits out of a long
 mov t1,dn
 and t1,#15 't1=pixel down
 add tmp,t1 'tmp=pixel value of two vertical pixels
 cmp tmp,sum wc 'c if tmp<sum

APPLY FILTERS AND TRACK A BRIGHT SPOT IN REAL TIME 265

266 CONTROLLING A ROBOT WITH COMPUTER VISION

if_c jmp #:notMax 'Found a new maximum
 mov dest,sum 'So save the position and value
 shl dest,#16
 add dest,n
 mov sum,tmp 'Reset max
:notMax ror dn,#4
 ror old,#4
 djnz m,#:dodiffb
 djnz n,#:loop
 wrlong dest,val
 jmp #cmdLoop

We can build additional fi lters to invert an image, look for edges, and apply a thresh-
old. Unlike Photoshop, we want to apply our fi lter continually to new frames coming
from our frame grabber. We also want to chain multiple fi lters together, linking the
output of one fi lter to the input of another. To do this, we’ll implement the concept of a
video buffer and a simple scripting language (see Fig. 7-6 for a diagram).

In the last section, we allocated one contiguous array in memory and used the
PropCVCapture object to write new frames of video into that array at high resolution.
From now on, we’ll continue allocating one array in memory, but treat it as four separate
video buffers. We’ll name the fi rst 1500 longs of the buffer “Quadrant 0” and display
this in the upper-left inside area of ViewPort. Our frame grabber will fi ll this buffer with
raw video from the camera if we use the VIDEO4 option. We’ll name the remaining
4500 longs Quadrants 1, 2 and 3 and display them in the upper-right, bottom-left, and
bottom-right areas, respectively. Using our scripting language, we’ll fi lter frames to and
from these video buffers. You can think of each of these buffers as a temporary video
“variable” that we use for our video calculations.

We’ll keep our scripting language simple. For each script action, we’ll store one long
that indicates which fi lter to apply. We’ll use two additional longs to point to the fi rst
pixel in the source and destination video buffers. To make the system fl exible, we’ll
allow fi lters to access any number of additional parameters to confi gure their behav-
ior. The following assembly code implements the scripting engine, which continually
applies our vision fi lters to the vision buffers.

 Figure 7-6 Video fi lter chain scripting language
and video buffers.

 org 0
doEdit mov cmdPtr,par
cmdLoop rdlong action,cmdPtr
 add cmdPtr,#4
 rdlong dest,cmdPtr
 add cmdPtr,#4
 rdlong src,cmdPtr
 add cmdPtr,#4
 mov n,len
 add action,#:jmpTable
 jmp action
:jmpTable jmp #doEdit
 jmp #dolimit
 jmp #doinvert
 jmp #dodiff
 jmp #dochaos
 jmp #domax
 jmp #dopattern
 jmp #docopy

Last, we’ll need some methods to let other programs specify which fi lters to run in
their engine. The following Spin code lets users programmatically add two types of
fi lters: those taking a value argument and those that don’t. The start method is used
to start a cog, which will then continually cycle through the fi lters.

con
#0,None,Threshold,Invert,Difference,Chaos,Max2,Pattern,Copy 'Fuzzy maps
var
 long cmd[20]
pub start(tVptr,tmode)
{{start a cog to continuously apply vision filters, tvptr points to the video
buffer,
 tmode set to 0 for a 6000kb buffer, >=1 for a 1500kb buffer}}
 if tmode>1
 len:=1500
 len4:=6000
 llen:=60
 vptr:=tVptr
 cognew(@doEdit,@cmd)
pub filter(tDest,tSrc,tFilter)
{{add a filter to the filter chain, tDest=destination frame, tSrc=source frame,
tFilter=filter number}}
 cmd[cmdNum]:=tFilter
 cmd[cmdNum+1]:=vptr+tDest*len4
 cmd[cmdNum+2]:=vptr+tSrc*len4
 cmdNum+=3

APPLY FILTERS AND TRACK A BRIGHT SPOT IN REAL TIME 267

268 CONTROLLING A ROBOT WITH COMPUTER VISION

pub filterValue(tDest,tSrc,tFilter,tVal)
{{add a value filter to the filter chain, tDest=destination frame, tSrc=source
frame, tFilter=filter number, tVal=parameter value}}
 cmd[cmdNum]:=tFilter
 cmd[cmdNum+1]:=vptr+tDest*len4
 cmd[cmdNum+2]:=vptr+tSrc*len4
 cmd[cmdNum+3]:=tval
 cmdNum+=4

The following Spin code integrates the vision fi lter chain with the frame grabber we’ve
developed previously. This time, we’ll allocate 6000 longs for our vision data and select
the VIDEO4 mode from the PropCVCapture object to capture lower-resolution video into
the upper-left quadrant. This allows us to use the other quadrants to view fi ltered versions
of our data. To fi lter the video, we’ll make several calls to “ve.fi lter” to confi gure and set
up the fi lter chain. We’ll use the invert, threshold, difference, and max fi lters that come
with PropCVFilter. Once set up, the fi lters will run in their own cog, periodically updating
the video data and the variable indicating where the brightest spot is.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
OBJ
 vp : "Conduit" 'Transfers data to/from PC
 video: "PropCVCapture" 'Capture video signal and view in Viewport
 ve: "PropCVFilter" 'Applies vision algorithms to video
pub vision|videoFrame[6000],blob,b1,x,y,w,h
 vp.register(video.start(@videoFrame,video#VIDEO4)) '1 video buffer
 vp.config(string("var:blob,b1,x,y,w,h"))
 vp.config(string("dso:view=blob"))
 vp.config(string("video:view=blob"))
 vp.config(string("start:video"))
 vp.share(@blob,@b1)
 ve.start(@videoFrame,video#VIDEO4) 'Apply vision
 ve.filter(1,0,ve#invert) 'Invert pixels from 0 to 1
 ve.filter(2,0,ve#difference) 'Calculate difference from 0 to 2
 ve.filtervalue(3,0,ve#threshold,10)'Only show brightest spots
 ve.filtervalue(0,0,ve#max,@b1) 'Find maximum'

Figure 7-7 shows a screenshot of the video streamed from the Propeller. Notice the
original image in the upper-left quadrant, the negative of the image in the upper-right
quadrant, then the horizontal edge fi ltered image in the bottom-left quadrant, and the
thresholded image in the bottom-right quadrant. Also, the marker represents the location
of the brightest spot as found by the “fi ndMax” fi lter.

We now have two channels of information updated at 30 times a second with which
we can drive the two control channels of a robot: speed and direction. We use the x posi-
tion of the spot to control the turning rate of the robot. If the spot is in the middle, we
don’t need to do anything. However, if it’s on the left side of the image, the algorithm

tells the robot to turn left until the spot is in the center and the robot is facing the source
of the spot. The robot’s speed is controlled using a similar technique: using the verti-
cal position of the spot. The algorithm’s goal is to keep the spot’s position centered in
the image. So when the spot is too low, the robot is instructed to move forward, which
brings it closer to the spot’s source, and because our camera is looking up at the spot,
will raise the spot in the image. Conversely, if the spot is too high, our robot is too close,
so it’s commanded to drive backwards. Translating this algorithm into code is simple:
We just scale and offset the x,y location of the spot to control the robot.

To illustrate the high-speed tracking ability of this fi lter, I can use ViewPort to display
the streamed video with a superimposed trail showing the position returned from the
fi lter over the last minute. Figure 7-8 shows a screenshot with the grayscale image as
seen by the camera and a trail showing the path the bright source took.

APPLY FILTERS AND TRACK A BRIGHT SPOT IN REAL TIME 269

 Figure 7-7 Multiple video buffers showing the effects of negative, edge, and threshold
fi lters.

270 CONTROLLING A ROBOT WITH COMPUTER VISION

Following a Line with a Camera
In the previous section, we controlled the behavior of the robot by shining a bright light
at the camera. This works in some environments where we can control the lighting and
ensure that no other objects refl ect or create light to the camera that’s brighter than our
fl ashlight. It’s also an active method, where we have to power the fl ashlight. We’ll now
look at a fi lter that is less restrictive and uses a passive method to steer a robot.

Traditional line-following robots use two phototransistors to stay on a line. One pos-
sible strategy works by ensuring that one detector is on the dark line while the other is on
the lighter background. More sophisticated robots use additional detectors to determine
the robot’s exact position on the line, to look ahead, or even to recognize junctions.

 Figure 7-8 Tracking an object at high speed.

In this section, we’ll build a fi lter that uses our existing frame grabber to perform fol-
lowing a line with a camera.

Since our frame grabber gives us too much information, we need to design a fi lter
that will steer a robot in the middle of a line. We start by mounting the robot’s camera
so that its fi eld of view is from below the horizon to just in front of the robot (see
Fig. 7-9). Now, we can stream the video to ViewPort and analyze what the video of
a properly programmed robot would do. It becomes apparent that a good strategy is
to average the location of the darkest pixel in each line. This is quite robust, easy
to program, and gives a good control signal to the robot. The following assembly
code fi lter is used for this task. Integrating this fi lter with the rest of the DanceBot is
straightforward. We just use the average position of the line to control the direction
of the robot while it’s moving along at a set speed.

The following assembly code fi lter averages the location of the darkest pixel in each
line. Watch a video of my DanceBot using this fi lter to follow a black line here: http://
mydancebot.com/viewport/videos.

FOLLOWING A LINE WITH A CAMERA 271

 Figure 7-9 DanceBot with camera confi gured to
follow lines.

http://mydancebot.com/viewport/videos
http://mydancebot.com/viewport/videos

272 CONTROLLING A ROBOT WITH COMPUTER VISION

doLowest
 rdlong t1,cmdPtr ' t1 points to seexy will be written with

sum of pos of lowest item
 add cmdPtr,#4
 mov t2,#0 't2 is sum of pos

 mov n,linesNpanel 'Loop over panel
 :loopLines mov x,longsNline 'Loop over line
 sub x,#2
 mov val,#15 'Reset val
:loop rdlong old,src 'Loop over longpixels
 add src,#4
 mov m,#8
 mov new,#0

:limit mov tmp,old
 and tmp,#15
 cmp tmp,val wc 'c set if v1<v2
if_c add new,#15
if_c sub val,#1
if_c mov t3,x 't3 is pos of lowest item
 ror new,#4
 ror old,#4
 djnz m,#:limit

 add dest,#4
 djnz x,#:loop 'Loop over longpixels
 add t2,t3
 add src,#8
 add dest,#8
 djnz n,#:loopLines 'Loop over lines
 wrlong t2,t1
 jmp #cmdLoop

Track a Pattern
We’ve gone from tracking an active, bright spot to following a passive line on an
artifi cial background. Now it’s time to track a passive pattern in the real world. Our
goal for this section is to develop an algorithm and pattern that will steer the robot in
practically any environment. As an experiment, take a look around you and imagine
what type of pattern would stand out in our typical cluttered world—in computer
vision terms, we’re looking for an appropriate fi duciary pattern. In most places, a
barcode-like pattern of repeated black and white lines should do well. This pattern

is relatively rare in most settings, and we can use a chain of simple vision fi lters to
locate it, even in visually cluttered scenes.

First, we need to build a fi lter that’s sensitive to horizontal edges in our video. Looking
at relative changes in value improves the robustness of our algorithm, especially when
lighting conditions change. The horizontal Sobel fi lter is quick to implement and does
a good job of detecting vertical edges. To compute it, just replace each pixel with the
absolute value of the difference of its horizontal neighbors. When we run the horizontal
Sobel fi lter on our pattern, we notice that area corresponding to the pattern turns white;
the fi lter fi nds many edges close together in that area.

Next, we need to design a fi lter that highlights these areas where multiple edges occur
close together. The algorithm I chose keeps a running total of the last eight pixels. When
we chain this fi lter with the horizontal Sobel fi lter, it has the effect of fi nding large areas
that contain strong horizontal edges caused by multiple black and white stripes.

For our last fi lter we’ll reuse the “fi ndmax” fi lter we designed two sections ago. By
chaining these three fi lters together, we fi nd the location of the maximum running total
of vertical transitions—in other words, we fi nd a black/white striped pattern. We can
now use the location of the found object to steer our robot without any active input.
When used with the DanceBot, we end up using all eight cogs (see Fig. 7-10 for a dia-
gram of the complete system). Two cogs are used by PropCV to capture and process

TRACK A PATTERN 273

 Figure 7-10 Complete DanceBot system diagram.

274 CONTROLLING A ROBOT WITH COMPUTER VISION

video to steer the robot, while the remaining six cogs are used to balance the robot with
its multiple sensors (see Chap. 6 for more details).

To make our pattern robust at different distances, we can repeat it at various scales.
When we now place this pattern on our belt, we can start dancing with our DanceBot.
Stepping closer to the robot makes the image of our pattern move up in the robot’s fi eld
of vision—this causes the robot to move backwards and maintain a set distance from us.
Stepping to one side of the robot causes the pattern to move horizontally, which com-
mands the robot to turn and face us. While dancing with my robot, I discovered some
interesting behavior that I hadn’t planned on. When I jumped up or crouched down,
the robot would change its set distance to me. When I turned around, thereby covering
the pattern, the robot also turned around. It no longer detected the pattern and went
into search mode, where it turned on its axis. This level of vision-guided interaction
is still quite novel, but it’s all possible with a simple camera, an ADC, and a couple of
the Propeller’s eight cogs.

State-of-the-Art Computer
Vision with OpenCV
The PropCV objects give us a good foundation to perform computer vision with the
Propeller. We’ve explored all the components that make up a vision sensor: the frame
grabber, the chain of vision fi lters, and the multiple vision buffers to store our images.
The Propeller is fast enough to do simple vision processing in a single cog with its own
memory; however, we need more power to perform more sophisticated computer vision.
So, let’s use our knowledge to tackle the state-of-the-art vision system that’s included
in ViewPort: the OpenCV plug-in.

OpenCV is a library of computer vision functions that was originally developed by
Intel in 1999. It’s now available to everyone as an open-source project on sourceforge.net
and has corporate support from Willows Garage. It’s been used successfully in video
surveillance systems, video games, and robotics. Stanley, an autonomous car created by
Stanford University, used OpenCV to fi nd its way through 132 mi of California desert
to win the 2005 DARPA Grand Challenge.

The goal of the OpenCV project is to advance vision research by providing open and
optimized code for vision infrastructure. Rather than reinventing the wheel, researchers
can reuse and complement vision algorithms contained in OpenCV. Developers can add
features to OpenCV and even develop commercial applications.

The library is written in the C language and includes more than 500 functions that cover
the entire space of computer vision. Besides image manipulation functions, the library
can be used to fi nd objects like human faces, understand gestures, construct 3-D models
from stereo cameras, track motion, and even do statistical-based machine learning. The
functions are performance-optimized to take advantage of advanced multimedia instruc-
tions found in modern processors. In the following sections we’ll explore how OpenCV
implements several of these functions and then use them in our Propeller Spin program.

FINDING COLORED OBJECTS

Since OpenCV supports color video sources, one useful fi lter we can employ is a color
blob fi lter. This fi lter fi nds the area containing the largest number of pixels that match
our target color. To understand the color fi lter, however, we need to understand two
different color spaces.

Earlier in this chapter we learned that pixels make up an image and that each pixel in a
24-bit color image is typically defi ned by three bytes that defi ne the red, green, and blue
levels of the pixel. This, the RGB color space, is the most common color space used by
electronic systems like computers, cameras, and webcams. It’s an additive color model
where different proportions of the three primary colors are added together to reproduce
the broad array of colors we see on our monitors. For example, to produce a yellow
pixel, we would add equal amounts of red to equal amounts of green—using more of
both would make the pixel brighter. Other color spaces exist and are appropriate for
different uses. For example, the subtractive color space CMYK (cyan, magenta, yellow,
and black) is used in the printing industry, and HSV (hue, saturation, and brightness)
is used in televisions.

Video coming from a webcam is typically in the RGB format. Searching this stream
of data for pixels that exactly match a chosen color is easy: We just have to match the
three bytes of each incoming pixel to our target RGB values. However, this solution
doesn’t solve our problem. To accommodate changes in lighting, shadows, and color,
our fi lter should match colors that we humans would judge as being similar to the
target color. Doing this is much more effi cient when we fi rst convert each pixel’s color
from the RGB to the HSV color space. Fortunately, converting from RGB to HSV is
straightforward and OpenCV provides us with a high-speed fi lter to do that.

Once our pixels are in the HSV color space, we can restrict our search to pixels
whose HSV values lie within a specifi c range. For example, to search for bright, highly
saturated blue pixels, we could look for pixels whose hue lies between 150 and 170
with saturation and brightness values higher than 200. We can generalize this to fi nd all
brightly colored pixels—for example, toys—by looking for pixels with saturation and
brightness values higher than 200, ignoring the hue altogether.

OpenCV allows us to chain fi lters together just like our PropCV system. The fi rst
fi lter results in a frame where only the pixels that match our criteria are set to white.
Then, we pass that image to a blob-fi nding fi lter, which fi nds the location and size of
the best blob that fi ts our pixels. The result is a fi lter that’s highly robust for fi nding
colored objects—something that’s useful as long as we have a color camera and are
looking for colored objects.

FINDING SPECIFIC OBJECTS

Let’s look at another interesting OpenCV fi lter: the Viola Jones object detector. This
fi lter is used to accurately fi nd objects that statistically resemble objects that the detec-
tor has been trained for. As confi gured in ViewPort, it’s quite good at fi nding all types
of human faces: with or without glasses, different hairstyles, and from different ethnic
groups.

STATE-OF-THE-ART COMPUTER VISION WITH OPENCV 275

276 CONTROLLING A ROBOT WITH COMPUTER VISION

The Viola Jones detector looks for features in the frame. Specifi cally, the detector
evaluates different parts and scales of the image to match their features with those iden-
tifi ed in the training set. These features are rather simple when we look at them: They
consist of a small number of rectangular areas where pixels are darker or brighter than
the surrounding area. Taken by itself, a single feature isn’t enough to detect an object,
but by combining multiple features that match in the right location and at the right scale,
the algorithm effi ciently fi nds objects.

The key to using the Viola Jones detector successfully is a good dataset of images
from which the features are learned. In theory, the fi lter is able to detect a wide variety
of objects when you take the time to build a clean learning set. So far, it has been used
mostly to fi nd human faces.

Unlike the color blob fi nder, this fi lter only looks at the grayscale component of the
video. Color frames sourced from a color webcam are fi rst processed by a grayscale
fi lter before the object detector is run. Since only grayscale frames are needed, you can
use this fi lter on video sourced from the PropCV frame grabber.

FINDING SHAPES

Faces are quite complex objects. Let’s look at a fi lter that fi nds a simple shape: a circle.
A circle fi lter is quite useful because spheres viewed from any direction have the shape
of a circle. Also, balls are quite common in many of the sports we play. A technique to
accurately track where they are in a robotic system can be useful!

It’s easy to confi rm the location and radius of a circle once we’ve found it. All we have
to do is look at the pixels that are one radius away from the circle’s center and make
sure they mark the edge of the object we’re seeking. This fi lter typically preprocesses
the frame with an edge detector fi lter, so the circle’s edge will ideally be completely
white. However, fi nding the location and radius is ineffi cient in our traditional Cartesian
system, where pixel values are arranged geometrically by their x and y locations. There
are so many possibilities! Luckily, we can transform our frame data from the Cartesian
system into a three-dimensional space using the Hough transform, where this process
becomes much easier. This mathematical technique is a linear transformation that maps
edge points to a specifi c point in the three-dimensional location/radius space. Once the
transform has been applied, fi nding the circle is a quick matter of fi nding the maximum
in the location/radius space.

Enough math! Now let’s get back to the Propeller and fi nd some objects with
OpenCV!

OpenCV and Propeller Integration
I designed ViewPort’s architecture to allow myself and others to add functionality to
the program through the use of plug-ins. I developed the OpenCV plug-in to make it
easy for Propeller users to add state-of-the-art computer vision to their robotic creations

without having to learn C or set up a development environment for OpenCV. People
have been doing computer vision research with OpenCV for quite some time, but
integrating it with real-world devices like sensors and actuators wasn’t easy. With
the plug-in and the Propeller, people have the best of all worlds: easy integration
with all sorts of real-world sensors and actuators with the Propeller and state-of-
the-art vision algorithms from OpenCV, all presented with a simple interface inside
of ViewPort.

Figure 7-11 shows a diagram of an OpenCV-enabled Propeller application. To
perform sophisticated computer vision, the OpenCV code is run on the host PC to
take advantage of the faster processor and larger amount of memory available there.
There’s a big difference between the 32 KB of RAM available on the Propeller
and the multiple gigabytes available on most PCs! Running on the host PC also
allows us to tap OpenCV’s various input options to process video from a variety of
sources. We can still process the grayscale video captured by the Propeller-based
PropCV frame grabber, but we can also process video from USB webcams, Ethernet
cameras, and video fi les. Confi guring OpenCV’s input source and fi lter options
can be done through ViewPort’s graphical interface or programmatically in Spin
code. The results of OpenCV-fi ltered video is shown inside of ViewPort, and the
location of found objects is continually sent to the Propeller, where it can be used
to steer robots.

Let’s take a look at a Propeller program that incorporates OpenCV. The following
Spin code allocates four variables: pos, x, y, and sum. It shares these variables with
the PC running ViewPort using the vp.share method from the “Conduit” object. One
line of code confi gures the video widget to take “webcam0” as a source, use “face”
as the mode, and pass the result to the variable called “pos.” This line is powerful!
It’s telling ViewPort to look for a human face with its webcam. And, most impor-
tantly, it’s confi guring ViewPort to continually update Spin variable “pos” with the
location of that human face. We can use the location of the face to control our robot,
make our system interactive, or, like the Spin code shows, calculate using the x and
y coordinates.

OPENCV AND PROPELLER INTEGRATION 277

 Figure 7-11 Propeller integrated with ViewPort running
OpenCV fi lters.

278 CONTROLLING A ROBOT WITH COMPUTER VISION

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
OBJ
 vp : "Conduit" 'transfers data to/from PC
pub findblob|pos,x,y,sum
 vp.config(string("var:pos,x,y,sum"))
 vp.config(string("dso:view=[x,y],timescale=1s"))
 vp.config(string("video:source=webcam0,mode=face,result=pos"))
 "source should be webcam0..1000,prop,or a file like: \cv\videotest.jpg
 "mode should be face,edge,color,circle
 vp.config(string("start:video"))
 vp.share(@pos,@sum)
 repeat
 x:=pos & $3ff
 y:=pos >>10 & $3ff
 sum:=x+y

Okay—time to go into more detail. First, the result returned from the OpenCV plug-
in contains the location and size of the desired object, all packed into a single long.
The x and y coordinates are stored in the lower 20 bits and range from 0,0 (lower left)
to 1023,1023 (upper right), no matter what camera you use. The height and width are
stored in the upper 12 bits and range from 0,0 (small) to 63,63 (the whole camera’s
width and the whole camera’s height). This makes it easy to write one program that
will work for people, regardless of what hardware they use. Most people will use
OpenCV with their computer’s built-in webcam or an inexpensive USB webcam.
However, you can use the “source” option to set OpenCV’s input to the PropCV frame
grabber, to an AVI fi le on your PC, or to other video devices. OpenCV fi lters will run
at the resolution and color mode of the source input. Processing a 24-bit megapixel
video stream on the PC is no big deal. Let’s look at the memory consumption for a
frame of that:

1 Mpixel · 24 bit/pixel · 3 byte/24bit = 3 MByte: a lot for the Propeller,
 but little of a PCs gigabytes of RAM!

Want to see how well OpenCV fi nds your face? All you’ll need is a webcam and
Propeller connected to your PC running ViewPort. When you load the previous code
(Tutorial #15 in ViewPort) to the Propeller, you’ll see a color video from the camera in
ViewPort’s “video” view. Your head should be marked with a red frame, and the
x and y variables on the Propeller should indicate the scaled position (see Fig. 7-12
for a screenshot). It should be straightforward to drive a hobby servo with the x signal
so that the servo tracks your face. To fi nd different objects, or to use a different video
source, choose the appropriate controls in the “openCV” panel.

Summary
I’ve had a lot of fun building the vision-guided DanceBot with the Parallax Propeller
and ViewPort. The Propeller’s unique architecture of eight identical cogs made it easy
to split the problem of guiding a balancing robot with vision into manageable pieces.
Depending on the performance required, I could either write the code in the high-level,
object-based Spin language or dive down to assembly to write completely determin-
istic code. The PropCV objects introduced in this chapter are a great start for adding
simple computer vision capabilities to any Propeller robot. The OpenCV plug-in for
ViewPort allows state-of-the-art computer vision applications to be developed with the
Propeller.

 Figure 7-12 Author’s head detected by OpenCV’s face detector.

SUMMARY 279

280 CONTROLLING A ROBOT WITH COMPUTER VISION

Exercises
1 Build another fi lter for the PropCV engine, and verify that it does what you

intended.
2 Build a robot that others can program by sketching the intended path with a laser.

While it’s being “programmed,” your robot should track the location of the bright-
est spot. Your robot should then drive a path that resembles the one taken by the
laser light.

3 Experiment with the OpenCV fi lters. Mount the webcam on a servo controlled by
the Propeller. Have the camera follow your face, a red ball, or even a circle.

281

8
USING MULTICORE FOR NETWORKING

APPLICATIONS

Shane Avery

Introduction
In this chapter we will show how to make use of the multiple cores in a Propeller to
create networked applications. We will explore the reasons why having multiple cores
provides the programmer with a new paradigm for creating applications. The platform
for this will be the HYDRA hobby video game development system with the EtherX
Ethernet add-in card running a simple game called “Button Masher.” Since the focus
of this chapter is networking, before we get to the “Button Masher” example, we will
take a look at Ethernet and Internet protocols such as TCP/IP and UDP/IP. Here’s what
we will cover in this chapter:

■ Ethernet and Internet protocols
■ EtherX add-in card for the Propeller-powered HYDRA
■ Creating a simple networked game

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_08.

Ethernet and Internet Protocols
Before we begin talking about the EtherX card and how to use it, we need a basic
understanding of computer networks. Computer networking is a complicated fi eld of
study in computer science which encompasses different protocols and topologies that

282 USING MULTICORE FOR NETWORKING APPLICATIONS

take years of studying to grasp. However, we will narrow our focus to the Ethernet link
layer and the common Internet protocols such as TCP/IP.

ETHERNET

Ethernet was developed by Xerox PARC in the 1970s as an implementation for a local
area network (LAN) and was standardized by the Institute of Electrical and Electronics
Engineers (IEEE). In theory, Ethernet can pass any kind of data the user would want.
The Ethernet standard not only defi nes what needs to be passed from device to device
to be valid data, but also defi nes the wiring and physical standards. It has become the
de facto standard for local area networks, replacing older standards like Token Ring
and fi ber distributed data interface (FDDI).

A valid Ethernet frame contains between 64 and 1518 bytes. The fi rst 14 bytes of
the frame comprise the header, which contains a destination MAC, source MAC, and
Ethertype. Then there is the payload data followed by a 4-byte checksum. A MAC
address is a 6-byte unique address for every Ethernet device made. You may also hear
this referred to as the physical address. The Ethertype indicates to the Ethernet device
a little about what kind of data the payload is, because in theory, the payload could
be anything. Internet protocols such as TCP/IP will have an Ethertype of 0 × 800. The
last four bytes are used to compute the CRC32 checksum. This is just fancy talk for an
algorithm that verifi es that the data that was sent was sent correctly. Figure 8-1 shows
an Ethernet frame.

INTERNET PROTOCOLS

For Internet protocols, the fi rst piece of data in the payload is the Internet Protocol
(IP) header. This IP header contains a lot of information about this particular packet
of information, much of which we don’t need to know for our Propeller programming.
As it pertains to the EtherX card, the two things we care about most are the protocol
fi elds and the IP address fi elds. The protocol fi elds indicate the type of data that appear
after this IP header. In this chapter, the two types of protocols we will focus on are
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). The other
key data in the IP header that we care about are the IP addresses. Every computer

80 00 20 7A 3F 3E
Destination MAC Address

80 00 20 20 3A AE
Source MAC Address

MAC Header
(14 Bytes)

08 00
Ether Type

IP, TCP, Data
Payload

Data
(46–1500 bytes)

Ethernet Type II Frame
(64 to 1518 bytes)

00 20 20 3A
CRC Checksum

(4 bytes)

 Figure 8-1 Ethernet frame.

ETHERNET AND INTERNET PROTOCOLS 283

connected to the Internet has a unique IP address (this is not strictly true, like with a
MAC address, but we will make this statement for now). The IP address is sort of like
a phone number. Computers called routers have an idea (or know exactly) where an
IP address is located on the Internet. In this way, these packets of data will hop along
from router to router until they reach their destination address. So now we have an
Ethernet MAC header followed by an IP header that looks like Fig. 8-2.

The IP header in all its glory is shown in Fig. 8-3.

MAC Header
(14 bytes)

IP Header
(20 bytes)

Ethernet Type II Frame
(64 to 1518 bytes)

TCP/UDP, Data
(26–1480 bytes)

CRC Checksum
(4 bytes)

 Figure 8-2 Ethernet frame with IP, TCP, or UDP header and data.

 Figure 8-3 IP header fi eld.

284 USING MULTICORE FOR NETWORKING APPLICATIONS

Now that we have IP addresses, we know where to go, but we need some more
information about what to do with the data. Think of your computer right now. Lots of
Internet data comes and goes. There’s your web browser, mail client, instant messaging,
BitTorrent, and so on. How does your computer know that a piece of data it received
from the Internet came for your web browser and not your e-mail? The answer is a
number called a port number. Your web browser works on a specifi c port, your e-mail on
a different port, and so on. Another header is added to help tell Internet devices about the
port number, and this layer is a TCP or UDP header. Once again, these headers contain
much more data than just the port numbers, but for the purposes of working with the
EtherX card, this is what we will focus on.

NOTE: As a side note, the layer following the IP header doesn’t need to be TCP
or UDP. It could be something else, such as Address Resolution Protocol (ARP),
Domain Name System (DNS), or PING.

What’s the difference between TCP and UDP? Both have port information, but TCP
guarantees that the data will get there, whereas UDP does not. That means if a packet
of data is lost, TCP will continue to resend until the packet reaches its destination. Also,
TCP provides fl ow control, meaning it will try to fi nd the optimum speed to send the
data (as fast as possible without losing too much data). UDP simply sends the data and
hopes for the best.

Which should you choose? Typically, UDP is chosen when speed matters. It takes
more time to verify that packets have arrived and to resend when needed, as is the case
with TCP. Typically, in UDP, data is constantly sent, so if you lose a data packet, it’s not
that big a deal because another packet will come along soon. A game like Microsoft’s
Halo would be an example of a UDP game, as the game needs to constantly update
player position, orientation, and action. If UDP packets begin to get lost, there is a
momentary hiccup, but the game will happily continue on once it gets the next packet.
TCP-based games are used when data loss matters more than time. A networked chess
game is a good TCP example because you would only send the data when a player
makes a move, and that data must arrive or else the opponent would never know it’s
his or her turn. A good rule of thumb for games is that real-time games use UDP and
turn-based games use TCP.

UDP AND TCP: WHICH DOES THE INTERNET CHOOSE?

Any real-time streaming data will be UDP, and this includes things like streaming
video and audio, which is why you notice hiccups sometimes when streaming
data on the Internet. Those hiccups are the periodic packets being lost between
the streaming server and your computer. The time it would take to straighten out
what packets were lost would take too long and would leave you way behind in the
stream. It’s best to just ignore the hiccup and move on. File transfers, on the other
hand, need to be perfect and thus use TCP, which is why when you look at a web
page, download an MP3, or chat with friends, the data is always correct.

ETHERNET AND INTERNET PROTOCOLS 285

Figure 8-4 shows the Ethernet frame now with the TCP header and the data.
Figure 8-5 shows the TCP header fi elds.

Figure 8-6 shows the Ethernet frame now with the UDP header and the data.
Figure 8-7 shows the UDP header fi elds.

The best way to learn about the networking fi elds is to actually see them. WireShark
is a free program that not only acts as a packet sniffer that grabs every bit of Internet
traffi c coming and going on your computer, but also breaks down each header for

MAC Header
(14 bytes)

IP Header
(20 bytes)

Ethernet Type II Frame
(64 to 1518 bytes)

TCP Header
(20 bytes)

Data
(6–1460 bytes)

CRC Checksum
(4 bytes)

 Figure 8-4 Ethernet frame with IP header, TCP header, and data.

 Figure 8-5 TCP header fi eld.

286 USING MULTICORE FOR NETWORKING APPLICATIONS

inspection. Figure 8-8 is a screen grab of WireShark capturing data on a request to
a web server. The upper pane shows the packets that have been grabbed (it shows
these in real time as they come into the computer). The middle pane shows a header
breakdown of the packet. The lower pane shows a complete hex dump of the entire
data. Clicking on a header in the middle pane will highlight the corresponding data
in the hex dump. In the screen capture, the TCP header is highlighted. A copy of
the WireShark program can be found on the ftp.propeller-chip.com FTP site in the
PCMProp/Chapter_08/Tools/ directory.

ORIGINS OF THE INTERNET

The origins of Internet are military in nature. The fi rst Internet was developed by the
Advanced Research Projects Agency (ARPA, which now is called DARPA—they
added the word “defense”) and was a simple packet-switching network that initially
only linked up UCLA, Stanford, UCSB, and the University of Utah. It’s hard to
imagine that at one time the entire Internet consisted of four computers.

MAC Header
(14 bytes)

IP Header
(20 bytes)

Ethernet Type II Frame
(64 to 1518 bytes)

UDP Header
(8 bytes)

Data
(18–1472 bytes)

CRC Checksum
(4 bytes)

 Figure 8-6 Ethernet frame with IP header, UDP header, and data.

 Figure 8-7 UDP header fi eld.

EtherX Add-in Card for the
Propeller-Powered HYDRA
The platform that we will use to demonstrate the networking application for the Propeller
is the HYDRA Game Development Kit with the EtherX card. The HYDRA Game
Development Kit was built around the Propeller and was designed by André LaMothe
at Nurve Networks, LLC. The HYDRA has many of the same features as the Propeller
Demo Board, including PS/2 mouse, PS/2 keyboard, VGA, and NTSC/PAL video, just
to name a few. Unique to the HYDRA are the NES connectors (for the gamepad), the
HYDRA-Net (for networking two HYDRAs directly), and an expansion connector. If
you’d like to learn more about the HYDRA, a fantastic book about it was written by

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 287

 Figure 8-8 Screen capture of WireShark.

288 USING MULTICORE FOR NETWORKING APPLICATIONS

André LaMothe and is included with every HYDRA sold. Figure 8-9 shows a picture
of the HYDRA Game Development Kit.

Since this chapter deals mainly with networking, we will focus on the EtherX card
developed by Avery Digital. While we will try our best to show how the card is inter-
faced to the HYDRA and how to write networked applications for it, some details may
be left out. The complete user manual for the EtherX card is located in the Chapter_08/
Docs/Documentation/ directory.

The EtherX card connects to the HYDRA via the expansion slot. The guts of the
EtherX card is the W5100 Ethernet chip from Wiznet. This chip contains a hardwired
TCP/IP stack, which offl oads a lot of the Internet protocol from the HYDRA. For
example, if the HYDRA wants to send a simple TCP/IP packet (assuming the
connection between server and client has already been established), the HYDRA
would need to send the packet and wait for an acknowledgement (ACK) from the
receiver. If the ACK doesn’t come in a timely manner, the HYDRA would need to
resend. Furthermore, if the HYDRA were receiving multiple data packets, the data
could come in out of order, which the HYDRA would need to stitch back together.
There is also the implementation of the sliding window protocol for transmitting and
retransmitting data to deal with. You get the picture. The complications just go on and
on. The W5100 Ethernet chip handles all this for us. We simply initialize the device
and then send or receive data. Figure 8-10 shows the EtherX card, and Fig. 8-11 shows
the EtherX card inserted into a HYDRA.

 Figure 8-9 HYDRA. (Courtesy of André LaMothe.)

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 289

 Figure 8-10 EtherX.

 Figure 8-11 EtherX inserted into the HYDRA.

290 USING MULTICORE FOR NETWORKING APPLICATIONS

ETHERX CARD ELECTRICAL INTERFACE

Before we dive head-fi rst into the electrical interface of the EtherX card, we’ll talk
about the physical interface from the EtherX to the HYDRA. As previously stated, the
EtherX card connects to the HYDRA via the expansion header, which not only provides
Propeller I/O and power, but also USB signals, HYDRA-net signals, and EEPROM
signals (so that an expansion card may be used for Propeller confi guration). In our case,
we only use the I/O and power. A table showing the EtherX interface to the HYDRA
expansion slot is shown in Table 8-1.

The interface from the HYDRA to the W5100 is SPI, which stands for Serial Peripheral
Interface (which was originally developed by Motorola). It’s one of two popular modern
serial standards, including I2C (which stands for Inter-Integrated Circuit) by Philips.
SPI is a clocked synchronous serial protocol that supports full duplex communication.
SPI needs three wires (data in, data out, clock), ground, and potentially chip select lines
to enable the slave devices. The downside to SPI is that every slave device connected
to the SPI bus needs its own chip select (also called slave select). Figure 8-12 shows a
simple diagram between a master (left) and a slave (right) SPI device and the signals
between them, which are:

■ SCLK—Serial Clock (output from master)
■ MOSI/SIMO—Master Output, Slave Input (output from master)
■ MISO/SOMI—Master Input, Slave Output (output from slave)
■ SS—Slave Select (active low; output from master)

SPI is a full duplex protocol, which means that as you clock data out of the master
into the slave, data is clocked from the slave into the master. This is facilitated by a
transmit-and-receive bit buffer that constantly recirculates, as shown in Fig. 8-13.

TABLE 8-1 ETHERX INTERFACE TO HYDRA EXPANSION SLOT

ETHERX CARD PIN HYDRA PIN FUNCTION

I/O_0 Pin 1 P16/Pin #21 OPMODE 2

I/O_1 Pin 2 P17/Pin #22 OPMODE 1

I/O_2 Pin 3 P18/Pin #23 OPMODE 0

I/O_3 Pin 4 P19/Pin #24 SCLK—SPI Clock

I/O_4 Pin 5 P20/Pin #25 SCS—SPI Chip Select

I/O_5 Pin 6 P21/Pin #26 MOSI—Master out/Slave in

I/O_6 Pin 7 P22/Pin #27 MISO—Master in/Slave out

I/O_7 Pin 8 P23/Pin #28 RST—W5100 Reset

3.3V Pin 14 POWER 3.3 V—Power

GND Pin 20 POWER Ground

The use of the circular buffers means that you can send and receive a byte in only
eight clocks rather than clocking out eight bits to send and then clocking in eight bits to
receive. Of course, in some cases, the data clocked out or in is “dummy” data, meaning
when you write data and are not expecting a result: The data you clock in is garbage,
and you can throw it away. Likewise, when you do an SPI read, typically, you would
put a $00 or $FF in the transmit buffer as dummy data, since something has to be sent,
so it might as well be predictable.

Sending bytes with SPI is similar to the serial RS-232 protocol: You place a bit of infor-
mation on the transmit line and then strobe the clock line (of course, RS-232 has no clock).
As you do this, you also need to read the receive line since data is being transmitted in both
directions. This is simple enough, but the SPI protocol has some specifi c details attached to
it regarding when signals should be read and written—that is, on the rising or falling edge of
the clock, as well as the polarity of the clock signal. This way, there is no confusion about
edge, level, or phase of the signals. These various modes of operation are:

Mode 0—The clock is active when HIGH. Data is read on the rising edge of
the clock and written on the falling edge of the clock (default mode for most
SPI applications). The clock phase polarity here is zero and Fig. 8-14 shows a
timing diagram for this.

Mode 1—The clock is active when HIGH. Data is read on the falling edge of the
clock and written on the rising edge of the clock. The clock phase polarity here is
one and Fig. 8-15 shows a timing diagram for this.

Mode 2—The clock is active when LOW. Data is read on the rising edge of the clock
and written on the falling edge of the clock. The clock phase polarity here is zero and
Fig. 8-14 shows a timing diagram for this.

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 291

 Figure 8-12 SPI electrical interface. (Courtesy of André

LaMothe.)

Memory

Master

0 1 2 3 4 5 6 7

Memory
SCLK

MOSI

MISO

Slave

0 1 2 3 4 5 6 7

 Figure 8-13 Circular SPI buffer. (Courtesy of André LaMothe.)

292 USING MULTICORE FOR NETWORKING APPLICATIONS

Mode 3—The clock is active when LOW. Data is read on the falling edge of the clock
and written on the rising edge of the clock. The clock phase polarity here is one and
Fig. 8-15 shows a timing diagram for this.

Notice that there is no timing-related logic in the method. Since the SPI protocol is
totally synchronous, the master in charge of the clock can run it as fast (to maximum

 Figure 8-14 SPI timing diagram for clock phase polarity = 0. (Courtesy of André

LaMothe.)

 Figure 8-15 SPI timing diagram for clock phase polarity = 1. (Courtesy of André

LaMothe.)

speed) or as slow (static, if desired) as he wants. Also, notice the data is sent out most
signifi cant bit (msb) to least signifi cant bit (lsb).

For the EtherX card, we will operate in SPI Mode 0. This is the only mode that the
W5100 operates in. The HYDRA has no built-in support for SPI, so we must bit-bang
the protocol ourselves. The bit-banging of the SPI protocol lives as assembly code that
fi ts completely in a cog.

Communication with the W5100 is exclusively on a register addressed basis. This
means that any read or write to the W5100 will be to a register that has an address.
All registers will have a 16-bit address and 8-bit data. Every read or write to the
W5100 will be four bytes long. The fi rst byte is the command (read or write), the next
two bytes are the address, and the last byte is the data. Writing a byte from the
HYDRA to the W5100 on the MOSI line will only be valid for a write. During a
read, the fi nal byte that you need to read will be on the MISO line. The SPI format
is shown in Fig. 8-16.

W5100: BUS INTERFACE?

The W5100 actually has two interfaces: an SPI and a bus interface. The bus inter-
face is actually far more effi cient in transferring data to or from the W5100. This
bus interface requires 15 address pins, 8 data pins, and 4 control pins. The HYDRA
was unable to accommodate this because there weren’t enough I/O pins mapped to
the expansion connector. Keep this in mind if you are designing the W5100 into a
new project. Also, the next-generation chip called the W5300, which promises data
rates of more than 70 Mbps, contains only a bus interface (no SPI).

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 293

0

OP-CODE Field (Write, 0 × F0)

OP-CODE Field (Read, 0 × 0F) Address Field

Address Field Data Field

Data Field

1

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1 1 0 0 0 0 A A A A A A A AA A A A A A A A A D D D D D D D D

0

0 × 00MISO

MOSI

SCLK
(MODE 0)

Smaple
MOSI/
MISO

/SS

0 × 01 0 × 02 0 × 03 (Write case)
Data value (Read case)

0 0 0 1 1 1 1 A A A A A A A AA A A A A A A A A D D D D D D D D

 Figure 8-16 Format of EtherX card SPI commands. (Courtesy of WIZnet Co., Ltd.)

294 USING MULTICORE FOR NETWORKING APPLICATIONS

ETHERX CARD APPLICATION PROGRAMMING INTERFACE

Now that we understand electrically how the EtherX communicates with the HYDRA,
we should mention the driver that provides a clean interface for the code written on the
Propeller. The driver can be found in every example in the Chapter_08/Source/ directory.
It is also located on the Avery Digital website at www.averydigital.com/products.html.
Figure 8-17 shows the overall driver architecture and its relationship to the application
and hardware.

As you can see from the fi gure, between the application and the EtherX card there
are three levels. The bottommost layer is the hardware interface layer, which is the
physical interface that has been discussed already in the electrical interface section.
The next layer is the SPI assembly code layer, which resides in a separate cog within
the Propeller. This layer handles the bit-banging of the SPI protocol, as shown in
Fig. 8-16.

The next layer (read and write) provides another layer of abstraction for the driver
by providing two Spin methods that will read and write data given a register address.
The application layer has direct access to these two methods, which would allow the
user application complete access to all registers within the W5100.

The fi nal layer of abstraction contains Spin methods that perform the most common
operations used in applications. These methods add another level of abstraction to open
sockets, read and write data, and initialize the W5100. In truth, they are unnecessary
because all they do is call the read method and write method with appropriate address
and data which the application could do for itself since it has access to the read method
and write method. They exist to make application code easier to read and write.

The user application needs to call a method to initialize the W5100 by providing
a MAC, IP, subnet, and gateway address. After that, the W5100 programming model

Hardware Interface Layer (W5100)

SPI Layer

read, write

Application Layer

Application Functions
(open, listen, connect, RX, TX, etc.)

 Figure 8-17 Simplifi ed
illustration of the EtherX
software model.

www.averydigital.com/products.html

closely resembles socket programming. A socket is opened on a particular port. When
opening the socket, the user determines if it should be UDP or TCP. If TCP, there is a
listen call (if we intend to be a server) and a connect call (if we intend to be a client).
UDP is connectionless, so this is not needed. Data is then transmitted or received by
TX or RX method calls. Table 8-2 shows a listing of the API methods.

SPI Assembly Layer The lowest level of the driver is the SPI layer. We’ll discuss
in detail here how it works, but all details aside, all it really does is send and receive
bytes using SPI. The SPI layer is written completely in assembly code and is designed
to live wholly in a cog with its 396 bytes.

The fi rst thing that the SPI layer does is set the correct pins to input or output as
needed to enable communication between the HYDRA and the W5100 via SPI. Once
that is done, we take the W5100 out of reset. Since there is no power-up reset on the
W5100, the HYDRA needs to reset the W5100 sometime after power-up. We take care
of this by pulling down the reset pin of the W5100 on the EtherX card, which will

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 295

TABLE 8-2 API LISTING

START AND STOP FUNCTIONS

start—Starts the SPI layer assembly code in a new cog.

stop—Stops and frees the cog containing the SPI layer assembly code.

READ AND WRITE FUNCTIONS

read (a0, a1)—Reads a byte from address a0, a1 from the W5100 via SPI.

write (a0, a1, dout)—Writes byte dout at address a0, a1 to the W5100 via SPI.

APPLICATION FUNCTIONS

init (gway, subnet, ip, mac)—Initializes the W5100’s gateway, subnet, IP, and MAC.

open (type, source_port, dest_port, dest_ip)—Opens the socket.

close—Closes the socket.

listen—Used when TCP server should listen for connection from client.

connect—Used when TCP client should establish a connection with server.

con_est—Used to determine if a TCP connection has been established.

TX (dataptr, size)—Transmits size bytes from main memory pointed to by dataptr.

RX (dataptr, size, block)—Receives size bytes to main memory pointed to by dataptr.

read_rsr—Returns the number of bytes the W5100 has stored in its internal receive
buffer.

MODE FUNCTION

mode(opmode)—Changes the operating mode of the W5100.

296 USING MULTICORE FOR NETWORKING APPLICATIONS

hold the W5100 in reset mode when the device is turned on. It is up to the HYDRA
to take the W5100 out of reset by setting the reset line to the W5100 to logic high.
Thus, the W5100 is held in reset until the SPI assembly code portion of the driver is
started in a new cog. After that, the SPI layer looks at global variables to determine
what to do next.

Five global variables are used to interface the Spin methods of the driver to the SPI
layer. Since the variables are global, they reside in main memory and are accessible by
all cogs, including the one where our SPI layer is located. The fi rst global variable is
the SPIRW variable. The main loop of the SPI layer will constantly look at this variable
to determine if it should take any action. As long as the variable is equal to zero, it will
do nothing. When the variable is equal to one, the SPI layer will read a byte from the
W5100 on the EtherX card. This will cause the SPI layer to send 0x0F as a fi rst byte to
the W5100 to indicate a read operation (see Fig. 8-16). When the variable is equal to
two, the SPI layer will write a byte to the W5100 on the EtherX card. This will cause
the SPI layer to send a 0xF0 as a fi rst byte to the W5100 to indicate a write operation
(see Fig. 8-16). After reading or writing a byte, the SPI layer will clear this variable
back to zero.

If you look at the assembly code for the SPI layer, the fi rst part simply loops, wait-
ing for the SPIRW variable to not be zero. Once the variable is not zero, the SPI layer
determines, based on the SPIRW variable, if the fi rst nibble should be 0x0 (for a read) or
0xF (for a write). If the value should be 0x0, it sets the MOSI line logic low and pulses
the SCLK line four times. If the value should be 0xF, it sets the MOSI line logic high
and pulses the SCLK line four times. The assembly code then does the same thing for
the second nibble (which should be 0xF for a read and 0x0 for a write). This would
complete the fi rst byte sent to the W5100 to indicate whether we will read or write a
byte from the W5100. Note that most SPI interfaces allow for full duplex (read and
write at the same time), but the W5100 command structure only allows one read or one
write per SPI transaction, thus making it half-duplex.

The next two variables, called add0 and add1, are the address that the SPI layer
will read from or write to. The interface of the W5100 is an addressable register
interface. This means that every read or write will be to a register in the W5100 and
every register has an address. As you can see in Fig. 8-16, two bytes are needed to
address the register you want to read or write. Whether the operation is a read or
write, the address portion of the transaction is exactly the same. Thus, after sending
the fi rst byte to indicate whether the operation is a read or a write, the SPI layer will
read the two address variables and send them to the W5100, regardless of whether
we are reading or writing.

The assembly code to accomplish sending the address to the W5100 acts as a shift
register. The assembly looks at the most signifi cant bit of the address variable and sets
the MOSI line logic high if the most signifi cant bit of the address variable is high.
Similarly, if the most signifi cant bit of address variable is low, the MOSI is cleared
to low. We then pulse the SCLK line to clock in that bit. The SPI layer will shift the
address variable left one bit and repeat the process until the entire address variable
is clocked into the W5100. The assembly code will do this twice, as there are two
address variables.

Note: Using the term “most signifi cant bit” here is a bit of a misnomer.
Technically, the global variables are 32 bits. This means that the most signifi cant
bit is the 32nd bit of the variable. When we say “most signifi cant bit” here, we
mean the most signifi cant bit that we care about, which is the eighth bit because
we send data to the W5100 one byte at a time.

After the address is sent to the W5100, the SPI layer will shift out (just like the
address variables) the value in the next global variable, called dataout, at the same
time it shifts in the data from the MISO line to the global variable called datain. It
does this whether the operation is a read or a write. In the case of a write, datain will
contain 0x03 as per the W5100 documentation. In the case of a read, the MOSI line will
output whatever data is located in the dataout, which is fi ne since the W5100 will ignore
whatever this value is during a read operation. In other words, even when we want to
read data from the W5100, we will output a byte on the MOSI line as though we are
writing. The W5100 knows that we are performing a read operation, so it will ignore it.
Keep in mind that whenever you perform a write operation to the W5100, the previous
value of the global variable datain will be wiped out and now contains 0x03.

The last thing the SPI layer will do is set the SPIRW variable back to zero. The SPI
layer was never intended to be directly accessible to the application layer. To change this,
you just need to make the global variables (SPIRW, add0, add1, datain, and dataout)
visible to both the application and the SPI layer. However, in the current version of the
driver, two small wrapper Spin methods called read and write are used to interface to
the SPI layer; we will discuss these next.

Information: The assembly source code is omitted here in the text since
assembly is a little obfuscated by its very nature. Nonetheless, if you truly want to
understand how the driver implements SPI specifi cally for the W5100, check out the
source code which is included every example in the Chapter_08/Source/ directory.
Use the force, read the source!

Read and Write Layers The two main methods for interfacing to the SPI layer are
the read and write methods. These are two simple wrapper Spin methods that are easy
to use and understand. The read method in its entirety is shown here:

PUB read(a0, a1) : ret_val

 " Call this method to read a byte from the W5100 via SPI.
 " The arguments are two bytes that contains address byte 0
 " and address byte 1. See W5100 data sheet for what registers
 " these actually address. The method will return the byte
 " that came via SPI from the W5100.

 'Read data from the address specified in the arguments
 add0 := a0 'Set the arguments to the global
 add1 := a1 'variables values
 SPIRW := SPI_RD 'Set SPIRW to the read value

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 297

298 USING MULTICORE FOR NETWORKING APPLICATIONS

 'Wait until the driver clears SPIRW. This indicates that it is done.
 repeat until SPIRW == SPI_DONE

 'The driver wrote the result to datain. Thus, that is the value
 'that we will return.
 ret_val := datain

You can see that the read method has two input parameters: a0 and a1. These rep-
resent the address you want to read from. The read method will then set these address
parameters to the global variables add0 and add1. It will then set the SPIRW global vari-
able to 1, which is equal to the constant SPI_RD (set in the CON section of the driver).

The read method then waits until the SPIRW global variable is set to 0, which is equal
to the constant variable SPI_DONE (set in the CON section of the driver). Remember that
the SPI layer will clear the SPIRW global variable to 0 when it is done with the SPI trans-
action. Thus, this method will block (which means it will wait, doing nothing) until the
SPI layer completes the transaction. It then returns the value that is stored in the datain
global variable, which is where the SPI layer writes the result of the transaction.

The write method is just as simple as the read method, as shown here:

PUB write(a0, a1, dout)

 " Call this method to write a byte from the W5100 via SPI.
 " The arguments are three bytes that contains address byte 0,
 " address byte 1 and the data we wish to write. See W5100
 " data sheet for what registers these actually address.
 " Note that the datain global variable will be overwritten
 " during this process.

 'Write data to the address specified in the arguments
 add0 := a0 'Set the arguments to the global
 add1 := a1 'variables values
 dataout := dout
 SPIRW := SPI_WR 'Set SPIRW to the write value

 'Wait until the driver clears SPIRW. This indicates that it is done.
 repeat until SPIRW == SPI_DONE

You can see that the write method has three input parameters: a0, a1, and dout.
These represent the address you want to write to and the data to be written. The write
method will set the address parameters to the global variables add0 and add1. It will
then set the dout parameter to the dataout global variable and will set the SPIRW global
variable to 2, which is equal to the constant variable SPI_WR (set in the CON section of
the driver). The write method then waits until the SPIRW global variable is set to 0,
which is equal to the constant variable SPI_DONE (set in the CON section of the driver).
Remember that the SPI layer will clear the SPIRW global variable to 0 when it is done
with the SPI transaction. Thus, this method will block (which means it will wait, doing
nothing) until the SPI layer completes the transaction.

That’s it! These methods are meant to be used by the application layer to read and
write bytes to and from the W5100. If you wanted to, you could interface to the HYDRA
EtherX card entirely just using these two methods. In fact, if you wanted to confi gure
or use the W5100 beyond what the HYDRA EtherX driver provides in the application
methods, you would need to use the read and write methods. In actuality, all the
other methods that are provided for the application layer in the EtherX driver use
these two methods. We will now explore these other application methods.

Application Methods Layer While you could simply use read and write to use
the EtherX, there are still a lot of sticky details about what data you need to send and to
what addresses to actually make the EtherX card useful. Application methods exist to
provide a means for you to use the EtherX card without actually needing to know the
gritty details of how the W5100 works. This is great for getting an application running
and learning about Ethernet and in the Internet in general, but I encourage you to look
at the methods and the W5100 documentation itself to understand what is going on.

Mode Method One of the only application methods that does not use the read and
write methods is the mode method. This allows you to change the mode of the W5100
to change the speed and half/full duplex of the W5100. By default, the Ethernet interface
of the EtherX operates at 10 Mbps and at full duplex. Pull-up and pull-down resistors on
the EtherX card set the mode by default, so if you never call the mode method, the card
will power up and come out of reset as 10 Mbps, full duplex. However, you can change
this if you are so willing. Be careful, though, as the EtherX card can become unstable
at 100 Mbps. It is no big deal that the default of the EtherX operates at 10 Mbps, as
the SPI interface to the W5100 is so much slower than 10 Mbps that you would never
notice the difference—in addition, all Ethernet devices are backward-compatible to
10 Mbps. But if you wanted to operate the device at 100 Mbps, this is the method you
would call to do so.

If you choose to call the mode method, it must be called before you start the EtherX
driver. This is because one of the fi rst things the EtherX driver does is take the W5100
out of reset; once the W5100 is out of reset, you shouldn’t change the mode of the
device. Thus, the mode method fi rst checks to see if the EtherX driver has already been
started and if so, it will do nothing. The method is shown here:

PUB mode(opmode) | temp

 " Call this method with the value wanted for opmode before
 " the start method is called. If the start method has
 " already been called then this method will do nothing.

 if (cogon == 0) 'Be sure driver not already running
 DIRA |= $70000 'Set pins 16-18 to output
 temp := opmode << 16 'Shift our arg 16 bits left
 OUTA &= $FFF8FFFF 'Clear all outputs on pins 16-18
 OUTA |= opmode 'Set only required pins on pins 16-18

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 299

300 USING MULTICORE FOR NETWORKING APPLICATIONS

Functionally, all the mode method does is set the pins that map to the W5100
mode pins to output and set them according to the opmode input parameter. To
make the W5100 100 Mbps and full duplex, call the mode method with opmode
equal to 0.

Start and Stop The only other two methods that don’t use the read and write

methods are the start and stop methods. You should recognize these, as they are used
in practically all drivers for the HYDRA.

We’ll discuss the stop method fi rst, as it is the most simple. It simply stops the SPI
layer and frees the cog it runs on. There, done!

The start method starts the SPI layer (written in assembly), which handles the
actual bit-banging of the SPI data to the W5100 in a new cog and returns the new cog
number that the SPI layer lives in. If you choose to call the mode method, it should be
called before the start method. All other Spin method calls (including read and write)
should be called after the start method has been called.

The code for start and stop is shown here:

PUB start : okay

 " This is the public start method. It starts
 " a new cog at the assembly entry point

 'Start the SPI code in a new COG
 stop
 okay := cogon := (cog := cognew(@entry, @SPIRW)) > 0

PUB stop

" Stops driver�frees a cog

 if cogon~
 cogstop(cog)

Init The init method should be called right after the start method. It initializes the
W5100 by telling it what our gateway, subnet, IP address, and MAC address are. The
init method is shown here:

PUB init (gway, subnet, ip, mac)

 'Init the registers
 'Gateway
 write($00,$01,byte[gway])
 write($00,$02,byte[gway+1])
 write($00,$03,byte[gway+2])
 write($00,$04,byte[gway+3])

 'Subnet
 write($00,$05,byte[subnet])
 write($00,$06,byte[subnet+1])
 write($00,$07,byte[subnet+2])
 write($00,$08,byte[subnet+3])

 'MAC
 write($00,$09,byte[mac])
 write($00,$0a,byte[mac+1])
 write($00,$0b,byte[mac+2])
 write($00,$0c,byte[mac+3])
 write($00,$0d,byte[mac+4])
 write($00,$0e,byte[mac+5])

 'IP
 write($00,$0f,byte[ip])
 write($00,$10,byte[ip+1])
 write($00,$11,byte[ip+2])
 write($00,$12,byte[ip+3])

You can see that the method takes the four arguments to the init method, which
are pointers to arrays, and writes their values to the corresponding register addresses
of the W5100. Keep in mind that the arguments are array pointers and you would fi ll
in the values on the arrays in your application before calling this method. Also, you
need to make sure that the arrays are byte arrays, not the default 32-bit arrays. An
example of calling this method from your application might look like the following
from the SimpleTCPClient program that is included in the Chapter_08/Source/
SimpleTCPClient/Spin/ directory.

VAR
 byte dip[4]
 byte subnet[4]
 byte ip[4]
 byte gateway[4]
 byte mac[8]
 byte buffer[256]

OBJ

 term : "tv_terminal_010.spin" ' Instantiate the terminal object
 eth : "W5100_drv_011.spin" ' Instantiate the W5100 driver

PUB begin | size

 'Start the tv terminal.
 term.start

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 301

302 USING MULTICORE FOR NETWORKING APPLICATIONS

 'Start the W5100 driver.
 eth.start

 'Display a title string and indicate we are
 'waiting for the ethernet to come up.
 term.out($02)
 term.pstring(string("HydraEtherX TCP Client Test",13,13))
 term.out($01)
 term.pstring(string("Waiting for Eth",13))

 'Wait for a while for the ethernet to come up.
 waitcnt(cnt + $17d78400)

 'Indicate that we are done waiting.
 term.pstring(string("Done waiting",13,13))

 'Fill out the arrays needed for initialization.

 'Destination IP is IP we are sending to
 dip[0] := 192
 dip[1] := 168
 dip[2] := 1
 dip[3] := 2

 'Fill out the rest of the arrays needed for initialization.
 'W5100 IP address.
 ip[0] := 192
 ip[1] := 168
 ip[2] := 1
 ip[3] := 100

 'Gateway.
 gateway[0] := 192
 gateway[1] := 168
 gateway[2] := 1
 gateway[3] := 1

 'Subnet.
 subnet[0] := 255
 subnet[1] := 255
 subnet[2] := 255
 subnet[3] := 0

 'W5100 MAC address.
 mac[0] := $00
 mac[1] := $70
 mac[2] := $6e
 mac[3] := $69

 mac[4] := $73
 mac[5] := $0a

 'Initialize the W5100.
 eth.init(@gateway, @subnet, @ip, @mac)

Notice that the gateway, subnet, ip, and mac arrays are byte arrays; to pass the
address of the pointer to the init method, you use the @ symbol. This example would
set your IP to address 192.168.1.100, your gateway to 192.168.1.1, and your subnet to
255.255.255.0, and your MAC address would be 00.70.6e.69.73.0a. Technically, you
should apply to IEEE for your own MAC address, especially if you intend to produce
a commercial product based on the W5100. But in reality, for educational purposes,
all you need to do is be sure that the MAC address isn’t the same as any other Ethernet
device in your local network.

Again, as you see here, you should call the init method after the start method and
before you call the open method, which we will discuss next.

Open and Close Socket programming has been around for a long time as an attempt
to standardize network interfaces. The W5100 loosely models the socket programming
scheme. It supports up to four independent sockets at a time. The EtherX driver only
supports one socket at a time, but there is nothing stopping you from modifying the
driver to support all four sockets. Sockets need to be “opened” in the W5100, and that
is why we have the open method call. To open a socket on the W5100, we need to tell
it whether the socket is a UDP socket or a TCP socket, what the source and destination
ports are, and the destination IP address. Actually, if you set up the W5100 to be a TCP
server, the destination IP address is not known at the time when you open the socket—
that value can be anything, as it will be ignored. The open method is shown here:

PUB open (type, source_port, dest_port, dest_ip) | temp, temp2

 " This method will open either a TCP or UDP socket based on
 " the type argument. The source_port and dest_port are the
 " source and destination port numbers. The last argument
 " is meant to be a four byte array that stores the destination
 " IP. We could have just made this a long arg but this
 " format is more human friendly.

 'Set the socket type so that other method know if we are
 'TCP or UDP
 socket_type := type

 'Configure socket for UDP for TCP (TCP is the default)
 if(socket_type == UDP)
 write($04,$00,2)
 else
 write($04,$00,1)

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 303

304 USING MULTICORE FOR NETWORKING APPLICATIONS

 'Configure source port
 temp := (source_port >> 8) & $FF
 temp2 := source_port & $FF
 write($04,$04,temp)
 write($04,$05,temp2)

 'Configure dest port
 temp := (dest_port >> 8) & $FF
 temp2 := dest_port & $FF
 write($04,$10,temp)
 write($04,$11,temp2)

 'Dest IP
 write($04,$0c,byte[dest_ip])
 write($04,$0d,byte[dest_ip+1])
 write($04,$0e,byte[dest_ip+2])
 write($04,$0f,byte[dest_ip+3])

 'Open socket
 write($04,$01,1)

You can see that the method has four parameters passed into it. The first is the
type, which is either 0 or 1. A 0 means UDP and a 1 means TCP. The CON sec-
tion defines UDP to be 0 and TCP to be 1 for easier readability. The next two
arguments are the source and destination ports. The final argument is a pointer
to a byte array of the destination IP. This value doesn’t make sense if we intend
to be a TCP server, as we cannot possibly know the IP address of the client that
may attempt to connect to us. Thus, if we intend to be a TCP server, this value
can be anything because it will be ignored. Notice that the open method will set
the socket type, source and destination ports, and then the destination IP address
before actually opening the socket. If you choose to not use the open method
and instead open a port yourself using the write method, be sure not to open the
socket until these are set. Do not attempt to change the socket type, ports, or des-
tination IP after the socket has been opened. If you need to change one of these
parameters, “close” the port first.

The close method will close a socket. After the close method has been called, the
socket will no longer send and receive data on that socket. Once closed, however, you
can change the socket type, source and destination ports, and destination IP address.
Then if you wanted, you could reopen the socket and those new parameters will take
effect. The following is the code for the close method:

PUB close

 " Close the socket.

 write($04,$01,$10)

Listen, Connect, and Connection Established If you choose open the socket as
a TCP socket, you need to determine if you will be a TCP server or a TCP client. TCP
will establish a connection before data is exchanged. Two methods will work to establish
a connection—which one you use will be based on whether you want the W5100 to
be a server or a client. If you choose to implement your socket as a UDP socket, there
is no need to use the listen, connect, or con_est method calls because UDP doesn’t
establish a connection before sending and/or receiving data. Following is the code for
the listen, connect, and con_est methods:

PUB listen

 " This method will initiate a TCP listen. Call this method
 " for a TCP server to listen for a connection.

 if(socket_type == TCP)
 write($04,$01,2)

PUB connect

 " When TCP this method will establish a connection with a server.

 if(socket_type == TCP)
 write($04,$01,4)

PUB con_est : ret_val

 " Call this method to determine if a TCP connection has been
 " established. The method will return true if a connection
 " has been established.

 if(read($04,$03) == $17)
 ret_val := true
 else
 ret_val := false

If the EtherX card will be a TCP server, it will call the listen method after it calls the
open method. This method will tell the W5100 that it will be a server and that it should
wait for a client to try and establish a connection with it. After you call the listen
method, you will need to call the con_est method, which returns true if a connection
has been established with a client and false if a connection has not been established.
Following is a snippet of code from the SimpleTCPServer code that shows how to use
listen and con_est. It can be found in the Chapter_08/Source/SimpleTCPServer/Spin/
directory.

 'Initialize the W5100.
 eth.init(@gateway, @subnet, @ip, @mac)

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 305

306 USING MULTICORE FOR NETWORKING APPLICATIONS

 'Open the socket for TCP communication.
 eth.open(TCP, PORT, PORT, @dip)

 'Listen for a connection.
 eth.listen

 'Display message.
 term.pstring(string("Listening...",13))

 'Wait for connection to be established.
 repeat while eth.con_est == false

 'Display connected message.
 term.pstring(string("Connected to PC",13,13))

You can see the order of the methods that need to be called to set up the W5100 for
data exchange as a TCP server in the previous snippet. Call the init, open, and listen
methods in that order and then call con_est as/when needed to determine when and
if a connection has been made. If the con_est method returns true, a connection has
been established with a client and you can then call the RX and TX methods to exchange
data with the client. Do not attempt to receive or transmit data before a connection has
been established.

If the EtherX card will be a TCP client, it will call the connect method after it calls the
open method. This method will tell the W5100 that it will be a client and that it should
attempt to establish a TCP connection with a TCP server location at the IP address speci-
fi ed in the destination IP address fi eld that we specifi ed in the open method call. Once
the connect method has been called, you need to call the con_est method to determine
if a connection has been made. Do not attempt to receive or transmit data before a con-
nection has been established. The con_est method will return true when the connec-
tion has been established and will return false if a connection has not been established.
Following is a snippet of code from SimpleTCPClient that shows how to use connect

and con_est. It can be found in the Chapter_08/Source/SimpleTCPClient/Spin/
directory.

 'Initialize the W5100.
 eth.init(@gateway, @subnet, @ip, @mac)

 'Open the socket for TCP communication.
 eth.open(TCP, PORT, PORT, @dip)

 'Display message.
 term.pstring(string("Connecting...",13))

 'Connect to the PC.
 eth.connect

 'Wait for connection to be established.
 repeat while eth.con_est == false

 'Display connected message.
 term.pstring(string("Connected to PC",13,13))

You can see that the processes for setting up the W5100 as a TCP server and as a TCP
client differ by only one line. You use listen for a TCP server and connect for a TCP client.
Other than that, the process is the same. Whether you choose to implement your socket as
a UDP, TCP client, or TCP server, the next thing you need to do is send and receive data.
This is accomplished using the RX and TX methods, which we will discuss next.

Transmit Once the socket has been opened (and a connection established if you are
a TCP socket type), you can send and receive data. The TX method is called to transmit
data; its code is shown here:

PUB TX (dataptr, size) | tptr, offset, startadd, a0, a1, counter, temp

 " Call this method to send data via the W5100.

 'Read the offset so we know what the starting address is
 'of the TX buffer.
 tptr := read($04,$24) 'Read the transmit pointer
 tptr := tptr << 8
 tptr += read($04,$25)
 offset := tptr & $7FF '2K of buffer determines mask of $7FF
 startadd := $4000 + offset 'Add offset to the starting address

 'Write the data to the W5100 internal memory buffer
 repeat counter from 0 to size-1.
 a1 := startadd & $FF
 a0 := (startadd & $FF00) >> 8
 write(a0, a1, byte[dataptr])
 offset++
 offset := offset & $7FF '2K of buffer determines mask of $7FF
 startadd := $4000 + offset 'Add the offset to the starting address
 dataptr++

 'Update the offset counter and write it back to the W5100.
 tptr += counter
 temp := (tptr & $FF00) >> 8
 write($04,$24,temp)
 temp := tptr & $FF
 write($04,$25,temp)

 'Tell the W5100 to write the data.
 write($04,$01,$20)

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 307

308 USING MULTICORE FOR NETWORKING APPLICATIONS

You can see that the method takes two arguments. The fi rst is a pointer to a byte array
that contains the data you want to send. The second argument specifi es how many bytes
you actually want to send. The driver writes the number of bytes you specify in the
size argument from the address in main memory, starting at the address pointed to by
the dataptr argument to the internal buffer of the W5100. Once the bytes have been
written to the internal buffer of the W5100, the EtherX driver instructs the W5100 to
transmit that data. Keep in mind that the default size for the internal buffer for socket 0
(the socket that the EtherX driver operates on) is 2048 bytes. This means that you can’t
write more than 2048 bytes’ worth of data at one time using the TX method.

GOT A PROBLEM WITH BEING LIMITED TO 2048 BYTES?

No problem. Check out the W5100 data sheet (it’s included in the Chapter_08/Docs/
DataSheets/ directory) and read about how to confi gure the W5100. Specifi cally,
you want to modify the size of the socket buffer. Learn what register’s address you
need to write to and what data you need to write to get the buffer size you want;
then write that value to the address you need using the write method. That’s what
it’s there for!

Another “gotcha”—besides the fact that, by default, you can’t transmit more than
2048 bytes at a time—is that you need to be sure you don’t specify the size argument
to be any larger than the buffer that is pointed to by the dataptr argument. There is no
automatic checking for an array that is out of bounds.

Receive The TX method is nice in that it operates the same no matter what your socket
type is—TCP or UDP. It is used the same way no matter what. However, the RX method
is called to receive data from the W5100, and it behaves differently, depending on your
socket type (UDP or TCP). The RX method is shown here:

Note: Lines marked with the “Ð” symbol should appear on the same line.

PUB RX (dataptr, size, block) : ret_size | offset, startadd, a0,Ð
a1, counter, rdptr, temp, tempsize Ð

 " Call this method to receive data via the W5100.
 " The method will return the number of bytes read.
 " Set block == true if you want the method to block waiting for data.
 "
 " This method will return the actual number of bytes read.

 'Block waiting for the W5100 to tell us that there is data.
 'Technically we are reading the number of bytes that have
 'been received.

 if(block == true)
 repeat
 temp := read($04,$26)
 temp := temp << 8
 temp += read($04,$27)
 while temp == 0 'Wait as long as we have received zero bytes

 'If the user wants a non-block RX call then we will return immediately
 'with a size of zero if there is no data to receive.
 else
 temp := read($04,$26)
 temp := temp << 8
 temp += read($04,$27)
 if(temp == 0)
 return 0

 'Compute the starting address.
 rdptr := read($04,$28) 'Read the receive pointer
 rdptr := rdptr << 8
 rdptr += read($04,$29)
 offset := rdptr & $7FF 'Socket 0 has 2K of buffer and that
 ' determines mask here of $7FF
 startadd := $6000 + offset 'Add the offset to the starting address
 ' of socket 0

 'Determine how many bytes we need to read.
 tempsize := read_rsr
 if(tempsize > size)
 ret_size := size
 else
 ret_size := tempsize

 'Now we read the data from the W5100 and write it to the array
 'pointed to by dataptr.
 repeat counter from 0 to ret_size-1
 a1 := startadd & $FF
 a0 := (startadd & $FF00) >> 8
 byte[dataptr] := read(a0,a1)
 dataptr++
 offset++
 offset := offset & $7FF 'Socket 0 has 2K of buffer and that
 ' determines mask here of $7FF
 startadd := $6000 + offset 'Add the offset to the starting address
 ' of socket 0

 'Need to increment the rdptr by the number of bytes actually read.
 rdptr += ret_size

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 309

310 USING MULTICORE FOR NETWORKING APPLICATIONS

 'Then write the value of the new pointer back.
 temp := (rdptr & $FF00) >> 8
 write($04,$28,temp)
 temp := rdptr & $FF
 write($04,$29,temp)

 'Tell the W5100 that we have read the data.
 write($04,$01,$40)

 'Issue the read command to the W5100 which just updates registers.
 'We will block waiting for the W5100 to finish.
 'This takes very little time but we will check it just to be sure.
 repeat
 temp := read($04,$01)
 while temp <> $00

As you can see, this is the largest and most complex method in the EtherX driver. You
can see why we saved it for last. Still, when you boil it down, all it really does is read
some data from an internal buffer in the W5100 and write that data to main memory in
the HYDRA. This method takes in three arguments. The fi rst, dataptr, is the memory
address of the byte array that the EtherX driver will write the data to that it reads from
the W5100.

The next argument, size, stipulates the maximum number of bytes that the RX method
should write to the memory pointed to by dataptr. For example, the receive buffer
that you have allocated in the HYDRA may only be 32 bytes in size and the W5100
may have received 40 bytes from the Internet. In this case, you want to be sure that
the EtherX driver doesn’t write 40 bytes’ worth of data into a buffer that you have
only allocated 32 bytes for. The next argument, block, we will skip for a second. The
method will return the actual number of bytes written to the buffer pointed to by the
dataptr argument. As an example, let’s again say you had a 32-byte receive buffer set
up in the HYDRA that was pointed to by the dataptr argument and the W5100 had
only 16 bytes’ worth of data that it had received. The EtherX driver will write 16 bytes
to the buffer pointed to by the dataptr argument and return a value of 16. In our fi rst
example, where the W5100 contained 40 bytes but only wrote 32 bytes to the buffer,
the return value would be 32.

The third argument in the method, block, is a Boolean variable that will instruct the
RX method what to do if there is currently no data waiting for us in the W5100. If there
is no data, we can do one of two things. The fi rst is to wait until data is available—this
is called blocking. The program will “block,” which means it sits there and does nothing,
waiting for data to arrive. Set the block argument to true if you want the RX method to
“block” and wait for data to arrive. The second thing you could do if there is no data
waiting for us in the W5100 when called is to return immediately and somehow indicate
to the application that there was no data available at the time. In our case, we would
return immediately and set the return value to 0 (which, remember, indicates how many
bytes have been read from the W5100 into the HYDRA main memory pointed to by

the dataptr argument). To set the RX method to “nonblocking,” set the block argument
to false.

BLOCKING OR NONBLOCKING?

Which should you use? Remember that a blocking call will wait until data is
available, which, in theory, could be a long time. Simply ask yourself what would
happen to your application if it paused and waited around for too long. Would you
miss some user input (i.e., Gamepad sample)? Would you be unable to update the
video or the music? If a method pausing for too long would cause a problem in
your application, use nonblocking. If your application will never do anything other
than look for data from the W5100, it’s better to use blocking. The concepts of
blocking and nonblocking are important when writing code for things like device
drivers and operating systems.

Sometimes it’s helpful to know before we call the RX method if data is available. The
EtherX driver has a Spin method to read the receive size register called read_rsr. If this
method returns a non-zero number, there is data in the W5100 for us to read.

The other thing we need to address here is the difference between a call to RX when
we have a socket type of TCP versus a socket type of UDP. Assuming there is already
data in the W5100 internal buffer waiting for us to read, when our socket type is TCP
and we read data from it, we will read only the data that was received by the W5100.
When we have a socket type of UDP, every received packet of data will have an eight-
byte header appended to it by the W5100. This header consists of the IP address of the
received packet (four bytes), the source port (two bytes), and the data size (two bytes).
So if you specifi ed the socket type as UDP and were expecting your PC to send you
32 bytes, you would, in fact, read 40 bytes from the W5100 when you read the data
from its internal buffer.

Just as with the transmit buffer of the W5100, the receive buffer of the W5100 can
only store 2048 bytes by default. Don’t let the W5100 get too much data into it before
you read, or your data will be corrupt. Just as with the transmit buffer, you can confi g-
ure the W5100 to have a larger receive buffer using the write method provided by the
EtherX driver.

Receive Size Register The last application method is the read_rsr method, which
will read the receive size register. It will return the number of bytes that the W5100 has
stored in its receive buffer for you to read.

If this method returns a non-zero number, there is data in the W5100 for us to read.
This read_rsr method is also handy in determining if we have read all the data out
of the W5100. For example, if we make a call to the RX method and specify that we
should read and store 32 bytes from the W5100 to the main memory of the HYDRA
pointed to by the dataptr argument and the return value is 32, we have a problem. We
don’t know if there are more bytes in the W5100 for us to read. Remember, we specify

ETHERX ADD-IN CARD FOR THE PROPELLER-POWERED HYDRA 311

312 USING MULTICORE FOR NETWORKING APPLICATIONS

a maximum amount of bytes to be written to the main memory in the HYDRA. If we
store that maximum amount of data, there could still be more in the W5100 waiting for
us to read it. But how could we know? The answer is to call the read_rsr method. If,
after we call RX with a size argument of 32 and we get a return value of 32 and we call
the read_rsr and it returns 0, then we know we got all the data. If it returns a non-zero
value, we know there is still data left over in the internal W5100 buffer for us to read
out. The code for this method is shown here:

PUB read_rsr : ret_val

 " Read the receive size register.
 " This will return the value in the receive size register
 " in the W5100.
 " A non-zero value indicates that there is data to be read.

 ret_val := read($04,$26)
 ret_val := ret_val << 8
 ret_val += read($04,$27)

Creating a Simple Networked Game
To show how to use the Propeller to implement networked applications in a mul-
ticore environment, we will create a simple networked game, since the HYDRA
is a game development platform, after all. Our new game will be called “Button
Masher.” The game is on a split screen, where the player’s score appears on the left
and the opponent’s score appears on the right. Whenever the player hits any button
on the gamepad, his score is increased. Conversely, whenever the opponent hits a
button, his score is increased. The fi rst person to hit a button fi ve times is the winner.
The entire source code for “Button Masher” is found in the Chapter_08/Source/
ButtonMasher/Spin/ directory. Also, most readers will not purchase two HYDRAs
to network together (although it is a blasty blast), so a C program was created that
will send an updated score to the HYDRA whenever you press ENTER. That way, you
can simulate another HYDRA using your PC. You can fi nd this program executable
and source in the Chapter_08/Source/ButtonMasher/C/ directory.

A key thing here is that when the player presses a button, he increments his score and
sends his new score to the opponent in an Ethernet packet (using the UDP protocol).
Of course, when the opponent presses a button, his score is incremented and he sends
an Ethernet packet to the player.

So, what will we need to implement this game? Of course we need a means to
display the graphics of the game on the screen. We will also need to monitor the
gamepad and, when a button is pressed, increment our score and send the new score
to the opponent. Last, we need to monitor the EtherX card to see if the opponent has
sent us his updated score.

TRADITIONAL MICROCONTROLLER APPROACH

For some perspective, let’s look at how your traditional low-power/cheap micro-
controller would implement this funtastic game. The majority of the time is spent
drawing the image on the TV screen. The vertical sync is typical when anything
other than video in a game (sampling the gamepad, sound, game logic, network-
ing, etc.) is dealt with. If you are unfamiliar with game programming, the vertical
sync is the time on the TV when the electron gun swings from the bottom of the
screen to the top.

There is some time during the horizontal sync as well (although small) if the pro-
grammer is clever. Again, if you are unfamiliar with game programming, horizontal
syncs are when the TV’s electron gun swings from the far right of the tube to the far
left of the tube to draw the next line. The horizontal sync time is often spent determin-
ing what data to write during the next line, so it is usually not practical to do any game
logic, sound, gamepad sampling, etc. during this time. It is important to note that the
timing for writing an image to a TV is precise. Even one clock-cycle difference can
result in distortion of the image or no image at all. Thus, interrupts cannot be used while
drawing an image because it will affect the video timing.

While there is nothing wrong with these implementations, the game programmer
is limited in that the only time he or she has to work with is during the vertical sync.
Things also start to get complicated when we consider conditions like what happens
when both player and opponent have a score of four and push the button within the same
video frame. Remember that we won’t be able to check gamepad and EtherX until the
vertical sync. So if both happened within the same frame, we would have no way of
knowing who actually won. It would appear as though they both happened at the same
time, and the game logic would be forced to declare a tie.

MULTICORE APPROACH USING THE PROPELLER

The Propeller, by contrast, would not need to wait until the vertical sync to sample the
gamepad, check the EtherX card, play a new sound, etc. All of these things happen in
a different cog in parallel with one another and completely independent of each other.
Let’s see the “Button Masher” code and discuss some of the important points of the
implementation.

Real quick, let’s break down what cogs will handle what.

Cog 0— Boots into the Spin interpreter by default and will start the drivers for our
I/O peripherals and handle our game logic

Cog 1—Gamepad (NES controller) driver

Cog 2—EtherX SPI driver

Cog 3—TV driver (NTSC)

Cog 4— Graphics driver; provides methods like drawing shapes and displaying text
on the TV

CREATING A SIMPLE NETWORKED GAME 313

314 USING MULTICORE FOR NETWORKING APPLICATIONS

Cog 5— Monitors the gamepad buttons and transmits the new score via EtherX card
to the opponent when a button is pressed

Cog 6— Constantly polls the EtherX card to determine if there is a score update from
the opponent

Here’s the Cog 0 game logic code. This is the code after we have started all of the
drivers, initialized the video, initialized the EtherX card, etc.

 'Initialize game variables
 winloss := 0
 player_score := 0
 opp_score := 0
 score_change := 0

 'Create a new lock to manage the EtherX card between cogs
 eth_lock := locknew

 'Start the gamedpad monitor in a new COG
 cognew(MonitorButtons, @cog_stack[0])

 'Start the ethernet monitor in a new COG
 cognew(MonitorEthernet, @cog_stack[128])

 '//
 'Begin the game loop
 '//
 'Draw the playing field.
 gr.clear

 gr.colorwidth(3,3)
 gr.textmode(6,6,6,0)
 gr.text(50,60,@pscore)

 gr.colorwidth(3,3)
 gr.textmode(6,6,6,0)
 gr.text(170,60,@oscore)

 repeat
 if(score_change == 1)

 'Clear the score_change variable
 score_change := 0

 'Display the new scores
 gr.clear

 gr.colorwidth(3,3)
 gr.textmode(6,6,6,0)

 pscore[0] := $30 + player_score
 gr.text(50,60,@pscore)

 gr.colorwidth(3,3)
 gr.textmode(6,6,6,0)
 oscore[0] := $30 + opp_score
 gr.text(170,60,@oscore)

 if(winloss == 1)
 gr.colorwidth(1,2)
 gr.textmode(4,4,6,0)
 gr.text(25,140,@vic)
 elseif(winloss == 2)
 gr.colorwidth(2,2)
 gr.textmode(4,4,6,0)
 gr.text(40,140,@def)

The repeat keyword indicates the main loop of the game. The score_change variable
is a global variable that will be changed by Cog 5 when the player hits a button or by
Cog 6 when the opponent sends us a score update because he has pressed the button.
All we do is clear the screen and draw the new scores on the screen. We then check
another global variable called win_loss, which is initialized to 0 and set to 1 by Cog 5, if
we won, or set to 2 by Cog 6, if we lost. If we won, in addition to displaying the score,
we display “Victory;” if we lost, we display “Defeat.”

You can see in the code how we start executing methods in a new cog using the
cognew keyword. Both the MonitorButtons method and the MonitorEthernet method
will begin executing in new cogs. Actually, the Spin interpreter will be loaded into two
new cogs, which will start executing Spin instructions in locations in main memory.
Here are the code listings for these two methods:

PUB MonitorButtons

 'This routine will run in another cog and monitor the gamepad.
 'It runs as a continuous loop waiting for player to push any button.

 repeat

 'Wait for the player to stop pushing on the pad
 repeat until (pad.read & $ff == 0)

 'Debounce button
 waitcnt(cnt + $10000)

 'Wait for the player to push something on the pad
 repeat until (pad.read & $ff <> 0)

 'Increment player score
 player_score += 1

CREATING A SIMPLE NETWORKED GAME 315

316 USING MULTICORE FOR NETWORKING APPLICATIONS

 'Determine if we have won
 if(winloss == 0 and player_score == 5)
 winloss := 1

 'Grab the ethernet lock and send new score to opponent
 repeat while(lockset(eth_lock) == true)
 eth.TX(@player_score, 4)
 lockclr(eth_lock)

 'Set the score_change variable
 score_change := 1

 'Debounce button
 waitcnt(cnt + $10000)

PUB MonitorEthernet | UDP_Header0, UDP_Header1, data

 'This routine will run in another cog and monitor the network.
 'It runs as a continuous loop waiting for data from the opponent
 'over the EtherX card.

 repeat

 'Grab the ethernet lock
 repeat while(lockset(eth_lock) == true)

 'If read_rsr > 0 then there is data in the EtherX card for us.
 if(eth.read_rsr > 0)

 'We are making a dangerous assumption here that the
 'only data to have arrived is the data from the other
 'HYDRA and we KNOW that it will send 1 words of data.
 'Note here however, that we read 3 words. This is because
 'when the W5100 reads UDP data the UDP header is included
 'in the data. The UDP header is 8 bytes (two longs) so we
 'read two longs of data which we junk. Then we read the data
 'we care about.
 eth.RX(@UDP_Header0, 4, false)
 eth.RX(@UDP_Header1, 4, false)
 eth.RX(@data, 4, false)

 lockclr(eth_lock)

 'Set the opponents score to the data received
 opp_score := data

 'Determine if we lost
 if(winloss == 0 and opp_score == 5)
 winloss := 2

 'Set the score_change variable
 score_change := 1

 else
 lockclr(eth_lock)

There’s one last topic to cover concerning multicore networking. You’ll notice
that we’ve created a lock in Cog 0 using the locknew keyword. Resource manage-
ment is a huge concern in multicore processing. As an example, let’s assume that
two cores want to write to a serial port (or SPI in our case). First, the two cores
cannot write at the same time. This is especially true in an architecture like the
Propeller (with no dedicated serial logic such as a UART), where the cores need to
bit-bang the I/O. What is needed is a mechanism for one core to know if a particu-
lar resource is being used by someone else. One way to solve this problem is with
something called a semaphore.

Using our serial port example, if a core wanted to send data out to a serial port, it
would fi rst look to see if the semaphore corresponding to the serial port were available.
If so, the core would “grab” it. Once the core has grabbed the semaphore, the core keeps
it until giving it up, and then the core can send data out the serial port, knowing that
another core will not stomp on the output. After the data has been output on the serial
port, the core needs to “release” the semaphore so that another core can use the serial
port if it needs to.

IF A CORE GRABS A SEMAPHORE, IT MUST RELEASE IT
AT SOME POINT

This is important, because if another core is blocking (not running anything else)
while waiting for that semaphore to be available and that semaphore never becomes
available because the previous owner never released it, you have a problem.

The Propeller calls these semaphores “locks.” Although they have a different name, the
concept is the same. Notice in the code that when a button is pressed, we need to send
the updated score to our opponent via the EtherX card. But we need to make sure the
MonitorEthernet method is not talking to the EtherX fi rst. So we wait to grab the eth_lock,
which is a lock that we created specifi cally for managing communication with the EtherX
card. We know we have grabbed the lock when lockset returns true. Also notice that when
we are done sending the updated score to the opponent, we immediately release the lock
with lockclr. Similarly, in the MonitorEthernet method, we grab the lock before we check
to see if there is any data from the opponent and release it as soon as possible to give the
MonitorButtons method an opportunity to access the EtherX if needed.

CREATING A SIMPLE NETWORKED GAME 317

318 USING MULTICORE FOR NETWORKING APPLICATIONS

Summary
So now we can see how to effectively use the multiple cores of the Propeller to imple-
ment a network application. In this chapter we have shown how to take an off-the-shelf
Ethernet chip, interface that chip physically and electronically to the HYDRA game
development platform, and write an API in both assembly and Spin to communicate
with it. We showed how to write code for a simple network application while making
use of the multiple cores available to us and managing resources using semaphores.
We even explored a little how this multicore solution is preferable to low-power/cheap
microcontrollers. Hope you enjoyed the chapter!

Exercises
1 Modify the “Button Masher” game to stream UDP packets at a constant rate, as

opposed to only when the player or opponent pushes a button. This way, even if a
packet is lost, it won’t matter too much because another packet will be along shortly.
This will turn “Button Masher” into an actual real-time game.

2 Modify the “Button Masher” game to communicate via the HYDRA-Net port instead
of Ethernet.

3 Use the last cog to add sound to “Button Masher.” This can be as simple as a sound
that is played when the game ends.

4 Make “Button Masher” more time effi cient. Currently, the MonitorButtons and
MonitorEthernet methods are Spin methods that are interpreted. This means that
they execute one Spin instruction every time the Hub comes around to that cog which
is slow. Rewrite MonitorButtons and MonitorEthernet to be assembly instructions
that fi t within one cog (they must be fewer than 512 bytes).

319

9
PORTABLE MULTIVARIABLE GPS

TRACKING AND DATA LOGGER

Joshua Hintze

Introduction
In this chapter we will use the Propeller to sample and log data from a GPS receiver
module and a miniature barometric pressure sensor. The received data will be logged
to a Secure Digital (SD) card that is also attached to the Propeller. A dataset will be
collected from the sensors and post-processed using free online software tools and also
a spreadsheet program like Microsoft Excel, Google Docs, or OpenOffi ce.org. We will
cover the following topics:

■ Learn what multicore means and why it’s important
■ Overview of the hardware connections between the Propeller and the sensors
■ How to interface to a GPS receiver and barometric pressure sensor
■ How to log sensor data to an SD card
■ Conversion equations between pressure and altitude
■ How to plot waypoint tracks using online tools and Google Earth

Let’s begin by discussing the advantages of using a multicore processor like
the Propeller to capture sensor data versus a sequentially operating single-core
microcontroller.

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_09.

320 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

SINGLE CPU VERSUS MULTICORE SENSOR READING

A vast number of methods are available for interfacing a microcontroller to a sensor.
This can range from simple asynchronous serial communication (see Fig. 9-1) using
three wires—TX, RX, and ground—to other forms of clocked serial communications,
such as Serial Peripheral Interface (SPI) and Inter-Integrated Chip (I2C). In contrast to
serial communications, some sensors and peripherals may be interfaced using parallel
data and control lines. For example, the Wiznet Ethernet Chip (discussed in Chap. 8)
supports sending and receiving Ethernet data through a 16-bit/8-bit parallel address/data
bus. Finally, there are more exotic methods conceived by manufacturers where careful
reading of the datasheet or hardware reference manual is required for interfacing.

Once a device is physically connected to a microcontroller, software must be written
to send and receive data and commands. This task is generally trivial when interfacing
one sensor to a microcontroller, but it can grow in orders of magnitude in complexity
when talking with multiple sensors. The reason why is because different sensors and
peripherals operate at diverse frequencies. While one sensor outputs its custom data
once every second (1 Hz), another sensor could be transmitting its data 10 times a

 Figure 9-1 Interface technologies.

INTRODUCTION 321

second (10 Hz). What is worse is when both sensors send their payload at exactly the
same time, requiring the microcontroller to capture and act upon the data arriving at its
input pins simultaneously.

Since microprocessors and microcontrollers have historically been single-core
(meaning a single CPU contained inside that acts upon a sequential set of instructions),
this problem has been solved by adding peripheral hardware for many of the standard
interfaces. These hardware peripherals capture and buffer data into separate memory
buffers without CPU intervention. For example, a typical Universal Asynchronous
Receiver/Transmitter (UART) that is capable of receiving serial data will contain a shift
register that clocks in each bit of data into an 8- or 16-bit register. Once enough data bits
have been clocked in, the serial data is then copied to another register and a fl ag is set in
the CPU to indicate that serial data has been received. The CPU must react to this fl ag
by interrupting its current fl ow of program execution and then copy the received serial
data from the saved buffer into main memory. If it does not act in a timely fashion, the
received serial data could be lost. See Fig. 9-2 for an overview of this process.

Now the previous example is grossly simplifi ed; hardware peripherals may con-
tain multiple levels of First-In-First-Out (FIFO) buffers so that the CPU does not get
interrupted as often. The peripheral may also contain Direct Memory Access (DMA)
hardware capability so that it may directly transfer received data into the larger main
memory without any CPU intervention. Regardless of the process, a single CPU micro-
controller almost always becomes interrupted when new sensor data is required to be

 Figure 9-2 Serial UART hardware peripheral.

322 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

read and saved. This can become a time-consuming operation, as any CPU registers
that are currently being operated on, including any status registers, must be stored; this
is called a context switch. If a processor is continuously being interrupted to service
sensor data requests, a large amount of time is spent switching between processes; in
the extreme condition where a CPU may spend all of its time jumping back and forth
between interrupts, that it can become deadlocked and no real work is performed.

Putting aside CPU time wasted from context switching, debugging software pro-
grams that have multiple processes and threads of execution to capture data using a
single CPU resource can become a logistical nightmare. Trying to trace execution paths
with debugging equipment while the CPU is being interrupted can become problematic.
However, diffi cult as these challenges sound, this has been the method of operation for
decades until multicore processors appeared.

When using a multicore processor such as the Parallax Propeller, we can dedicate
one core, or cog in Parallax terms, to each individual sensor. This alleviates the burden
of a single processor from being interrupted to handle different data rates. It also makes
it easier to communicate to sensors that use nonstandard communication protocols
because the entire cog can dedicate 100% of its time to reading in the data. This is
especially benefi cial for slow devices such as PS2 protocol keyboards and mice. Finally,
debugging the communication is easier since the program operation will not randomly
jump to an interrupt routine and instead will execute sequentially within each cog.

Overview of the Sensors
As discussed in the introduction, we will be connecting a GPS receiver module and a
barometric pressure sensor (which also contains a built-in temperature sensor) to the
Propeller. Data will be read in and displayed on a TV screen, and it will also be stored
to a SD card for post-processing. Figure 9-3 shows the overall hardware connections,
and Table 9-1 shows the descriptive pin connections.

 Figure 9-3 Hardware connections overview.

OVERVIEW OF THE SENSORS 323

To make this experiment easier to produce, we will use the Parallax Propeller Demo
Board since it already has a number of hardware connections for TV video out, prototyp-
ing areas, and light-emitting diodes (LEDs) on board. Plus, it already has all the neces-
sary components for operation, such as power supplies, EEPROM for program storage,
clock inputs, and hardware-interfacing mechanical connections. For a GPS receiver,
we will be using a Parallax GPS receiver module (Item Code: 28146). There is also a
barometric pressure sensor module MS5540C by Intersema that we will cover in depth
later on. Finally, a standard Secure Digital card is attached for data logging purposes.

As you can see from Table 9-1, we have only one data connection to the GPS. This
is because on startup, the GPS is wired to output raw data at a constant rate that the
Propeller will read in serially.

TABLE 9-1 PROPELLER PIN CONNECTIONS

PROPELLER PIN PERIPHERAL SIGNAL NAME DESCRIPTION

 P1 GPS TX Receive pin from the GPS transmit

 P2 SD nCS SD card chip select (low asserted)

 P3 SD DI SD card data in

 P4 SD SCK SD card clock in

 P5 SD DO SD card data out

 P6 Barometer SCK Barometer serial clock in

 P7 Barometer DO Barometer data out

 P8 Barometer DI Barometer data in

 P9 Barometer Master Clock Barometer master clock input (32.768 kHz)

P12 NTSC Out 0 NTSC Output 0

P13 NTSC Out 1 NTSC Output 1

P14 NTSC Out 2 NTSC Output 2

P15 NTSC Out 3 NTSC Output 3

P16 Start Switch Start push button switch input

P17 Stop Switch Stop push button switch input

P18 LED Mounted LED indicator for SD card mounted.

P19 LED GPS Sats LED indicator enabled when satellite lock is 3 or
 greater

P20 LED Heartbeat LED indicator toggles when recording a data
 segment

P21 LED Pressure Good LED indicator for barometer temperature is in
 valid range

P22 LED Recording LED indicator enabled when logging is on

324 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

Next the Propeller is connected to an SD card using an SPI interface, meaning there is
a Serial Clock, Data Out, and Data In connection from the Propeller to the SD card. The
barometric pressure sensor uses a slightly modifi ed SPI interface, but it also contains
all of the same communication pins as does the SD card.

One additional input into the barometric pressure sensor is the Master Clock pin
input. Since the barometric pressure sensor contains its own built-in microcontroller
for sampling the pressure sensor and communicating with outside devices (i.e., the
Propeller), it requires an input clock for the CPU operation. The required clock rate is
32.768 kHz, and we will synthesize that frequency using the Propeller’s counter regis-
ters and output it from a pin on the Propeller into the input pin on the pressure sensor.
This saves us from having to purchase an oscillator chip.

WHY DO WE USE 32.768 kHZ?

The 32.768 kHz signal is a common clock frequency that you may see often, espe-
cially in designs that call for a real-time clock (RTC). The reason why is that with
a real-time clock, we are interested in keeping track of the time of day, and one of
the easiest methods is to have an input crystal that oscillates at 32,768 cycles per
second. This is not a random number, but rather it is 215. If we were to take this
clock rate and input it into a 16-bit counter with outputs labeled Out[15:0], bit 15
would transition from a 0 to a 1 exactly one second after being reset. The 15th bit, or
the most signifi cant bit (MSB), could then be fed back into the reset of the counter
so that the counter is self-resetting. Also the 15th bit could be fed into a much larger
counter that keeps track of the number of seconds that have transpired since startup
or last reset. Even though the pressure sensor does not have any RTC circuitry, at
least none that we can read, the developers of the sensor probably choose this as
its operating speed since many circuit boards do have this clock source available,
and possibly to make calculations easier.

The Propeller is connected through a binary weighted resistor network to produce
NTSC television output for data monitoring and status information. However, when road
testing the sensors, a television is not immediately available so we will make use of an
array of LEDs that can signal any potential problems and toggle an LED on and off for
each sample recorded to the SD card. Take a look at the completed circuitry in Fig. 9-4.

GPS RECEIVER

GPS stands for Global Positioning System. It was created as part of a United States
Department of Defense (DOD) grant and is currently being supervised by the United
States Air Force in Colorado. Initially developed in the early 1960s for the military, it
became available for civilians in 1995.

A GPS receiver operates by receiving signals from a constellation of satellites that
are orbiting the Earth (see Fig. 9-5). Thirty-two satellites orbit the Earth, allowing for

OVERVIEW OF THE SENSORS 325

 Figure 9-5 GPS satellite constellation.

 Figure 9-4 Propeller Demo Board connected to experi-
ment sensors.

326 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

complete coverage with a little bit of overlap. Each satellite continuously transmits
three messages at 50 bps for 30 s, yielding a message length of 1500 bits. Encoded
in the fi rst message is the time of week, the current week of the year, and the satellite
health information. In the second message, the satellite broadcasts its current posi-
tion, also known as its ephemeris. Finally, in the third message is a table of all the
other satellites and the course positional information. The table of satellites is known
as an almanac.

Each data transmission is modulated into a higher-frequency signal before being
sent to earth. The two most common signals, L1 and L2, operate at 1575.42 MHz and
1227.60 MHz, respectively. The L1 signal carries the navigation message, a course-
acquisition (C/A) code, and an encrypted precision (P) code. L2 contains another
P code transmission. Civilian GPS receivers can only decode the course-acquisition
code, and without further augmentation can only achieve a positional accuracy of around
3 m under low-atmospheric error conditions. The P code can achieve ten times better
accuracy, or 30 cm, without additional help. Since the military controls the GPS satel-
lites, they could potentially disable the C/A code in times of war or other extenuating
circumstances, leaving only P code receivers that contain the correct decryption keys
capable of operating.

A civilian GPS receiver geolocates itself by receiving the L1 signal through its
antenna and then it demodulates and decodes the data stream. Upon receiving a mes-
sage, it records the current time and compares it to the original time that the signal was
sent encoded in the message. If T(s) is the time the message was sent and T(r) is the
time the message was received, we can use the following to calculate the distance the
GPS receiver is from the satellite:

Distance = [T(r) – T(s)] · c, where c = speed of light

We can think of the position of the GPS receiver as a point on a sphere, with the center
of the sphere being the position of the satellite and the radius of the sphere equaling the
distance calculated from the previous equation. If the GPS receiver is currently receiving
transmission from three satellites, it may then use geometric trilateration to determine
its current position as the intersection of the three spheres (see Fig. 9-6 for an illustration).
A large problem arises if there are even slight differences between the receiver’s and
the satellite’s clocks. For example, if there was a mismatch of 100 ns and we use the
speed of light as the propagation speed of the radio signal through the ionosphere, this
would lead to an error of

100 ns · c = 100 · 10 – 9 · 299,792,458 m/s = 299.79 m of error!

Thus, the GPS receiver either needs to have a really expensive and accurate clock
onboard or it can use positional information from more than three satellites to correct
its clock and accurately produce a position. In practice, four satellites are required for
a 3-D position fi x unless other information, like current elevation, is known a priori.

GPS receivers are manufactured by many different vendors. This means that the infor-
mation communicated by them can come in a form of a proprietary protocol. Fortunately

for us, most GPS receivers support a dual-mode transmission that is capable of trans-
mitting standard human-readable ASCII text. This is known as the National Marine
Electronics Association 0183 (or NMEA for short). The NMEA protocol describes a
number of serial data “sentences” that describe the current status of the GPS. Take a
look at an example set of NMEA sentences:

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,10,3*47<CR><LF>
$GPGSA,A,3,04,05,,09,12,,,24,,,,,2.5,1.3,2.1*39<CR><LF>
$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A<CR><LF>

The fi rst thing to notice is that each sentence begins with a “$” and ends with a
carriage return <CR> and a line feed <LF> ASCII character. Also, each fi eld in the
message is separated by a comma. Near the end of each NMEA sentence is an asterisk
“*” that signals that the following two bytes after the asterisk is an error-checking
code. To compute the error-checking code on your own, you would eXclusive-OR
(XOR) all the bytes between the “$” and the “*” and then test it against the transmitted
error-checking code before accepting the message.

Each sentence type can be identifi ed by its fi rst fi eld: GPGGA, GPGSA, GPRMC,
etc. There are many sentence types, but they all begin with GP. Once you have identifi ed

OVERVIEW OF THE SENSORS 327

 Figure 9-6 GPS trilateration.

328 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

the sentence type, you can then parse out the individual elements that are separated
by commas. For example, if we look at a GPGGA sentence, it could be separated as
follows:

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,10,3*47<CR><LF>

GGA GLOBAL POSITIONING SYSTEM FIX DATA

123519 Fix taken at 12:35:19 UTC

4807.038,N Latitude 48 deg 07.038' N

01131.000,E Longitude 11 deg 31.000' E

1 Fix quality: 0 = invalid

1 = GPS fi x (SPS)

2 = DGPS fi x

3 = PPS fi x

4 = Real-time kinematic (RTK)

5 = Float RTK

6 = Estimated (dead reckoning) (2.3 feature)

7 = Manual input mode

8 = Simulation mode

08 Number of satellites being tracked

0.9 Horizontal dilution of position

545.4,M Altitude, meters, above mean sea level

46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid

10 Time in seconds since last DGPS update

3 DGPS station ID number

*47 The checksum data; always begins with *

For additional information regarding GPS operation and the NMEA standard, see
the following:

http://en.wikipedia.org/wiki/Global_Positioning_System

http://electronics.howstuffworks.com/gadgets/travel/gps.htm

http://aprs.gids.nl/nmea/

Reading the GPS Sensor In this experiment we will be using the Parallax GPS
receiver module. The receiver module has four pins:

■ GND: Ground reference supply
■ VCC: 5 V input supply voltage

http://en.wikipedia.org/wiki/Global_Positioning_System
http://electronics.howstuffworks.com/gadgets/travel/gps.htm
http://aprs.gids.nl/nmea/

■ SIO: Serial data input/output (in our case, we will only use it as an output)
■ /RAW: Input pin that determines which communications mode to use

The /RAW input pin allows a user to select whether to use a binary command-based
communications system when connected to VCC, or, when connected to GND, it con-
tinuously streams raw NMEA sentences. Since we are only interested in the NMEA
sentences for this experiment, we will connect the /RAW pin to GND. This means we
will receive serial GPS data at a baud rate of 4800 bps with 8-bit ASCII, no parity, and
one stop bit.

To read in the serial NMEA sentences, we will make use of Parallax’s Object
Exchange (OBEX) Web site portal:

http://obex.parallax.com

The Object Exchange Web site contains hundreds (maybe even thousands by now)
of user-submitted Spin, assembly, or C code objects for use by the general public
under the MIT license. When searching the keyword “GPS,” a number of NMEA
parsers are already listed on the Web site. We elected to use a simple Spin language
GPS parser that initially displays the GPS information on a VGA terminal. This fi le
was originally created by Perry James Mole. The two fi les of interest to us for our
experiment are:

■ GPS_IO_Mini.spin
■ FullDuplexSerial_Mini.spin

The FullDuplexSerial_Mini.spin is a slightly modifi ed version of the Parallax full-
duplex serial driver, with the only modifi cations being that some of the transmitter
components are removed to save space in main memory.

The parsing of the NMEA strings takes place in the GPS_IO_Mini.spin object, spe-
cifi cally in the routine readNMEA listed here:

PUB readNEMA
 Null[0] := 0
 repeat
 longfill(gps_buff,20,0)
 repeat while Rx <>= "$" ' Wait for the $ to ensure
 ' we are starting with
 Rx := uart.rx ' a complete NMEA sentence
 cptr := 0

repeat while Rx <>= CR ' Continue to collect data
 ' until the end of the NMEA
 ' sentence
 Rx := uart.rx ' Get character from Rx Buffer

OVERVIEW OF THE SENSORS 329

http://obex.parallax.com

330 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

 if Rx == ","
 gps_buff[cptr++] := 0 ' If "," replace the
 ' character with 0
 else
 gps_buff[cptr++] := Rx ' Else save the character

 if gps_buff[2] == "G"
 if gps_buff[3] == "G"
 if gps_buff[4] == "A"
 copy_buffer(@GPGGAb, @GPGGAa)

 if gps_buff[2] == "R"
 if gps_buff[3] == "M"
 if gps_buff[4] == "C"
 copy_buffer(@GPRMCb, @GPRMCa)

 if gps_buff[0] == "P"
 if gps_buff[1] == "G"
 if gps_buff[2] == "R"
 if gps_buff[3] == "M"
 if gps_buff[4] == "Z"
 copy_buffer(@PGRMZb, @PGRMZa)

'Excerpt from GPS_IO_MINI.spin Copyright 2007 Perry James Mole

The readNMEA method is called when a new cog is started as the main entry point.
It begins by creating a null string initially and then enters into an infi nite repeat
loop. Inside the repeat loop it clears out the gps_buffer byte string with a call to
longfill(…). Next it loops until we have received a “$” ASCII character from the
serial port’s RX pin using the following code:

repeat while Rx <>= "$" ' Wait for the $ to ensure
 ' we are starting with
 Rx := uart.rx ' a complete NMEA sentence

Once the $ is located, we know that we have the beginning of the NMEA sentence
and that any character read in afterwards is part of this sentence up until the <CR><LF>
characters. The next section of code reads in and stores the characters from the serial
port into the gps_buff and replaces any occurrences of a comma with a 0 value. The
reason why we are replacing commas with zeros will become apparent shortly. Once
a <CR> has been encountered, the repeat loop ends, and the gps_buff should contain a
complete NMEA sentence.

After the sentence has been read in, we can check which type of message it was by com-
paring the fi rst couple of characters. This Spin code currently contains support for GPGGA,
GPRMC, and PGRMZ sentences. The astute reader might have noticed that PGRMZ does
not start with GP, even though we mentioned that all NMEA sentences begin with it. This is
because GPS receiver manufacturers can add their own proprietary NMEA sentences, and
in this case, the PGRMZ is a Garmin GPS receiver’s proprietary altitude sentence.

Regardless of the message being received, the copy_buffer(…) method is called
next, with arguments dependent on the sentence. The copy_buffer(…) method is
listed here:

pub copy_buffer (buffer,args)
 ' Copy received data to buffer
 bytemove(buffer,@gps_buff,cptr)
 ptr := buffer
 arg := 0
 repeat j from 0 to 78 ' Build array of pointers
 if byte[ptr] == 0 ' to each record
 if byte[ptr+1] == 0 ' in the data buffer
 long[args][arg] := Null
 else
 long[args][arg] := ptr+1
 arg++
 ptr++

The fi rst thing the copy_buffer(…) method does is perform a bytemove(…) copy
of the data from the gps_buff to the fi rst argument passed in. Next, it sets up a pointer
to the beginning of the buffer and zeros out an argument counter. Finally, a repeat loop
is entered that loops over the entire buffer, looking for those zeros that we replaced
commas with. When a 0 is encountered, it saves a copy of the memory location to the
args array that was passed in as the second argument to the copy_buffer(…) method.
When execution returns from the method, we have a copy of the original received
NMEA sentence, with commas replaced with zeros and an array of long pointers to
each of the original comma-separated sections.

NULL-TERMINATE?

A question that you might be asking yourself is, “Why did we replace the commas
with zeros when we could have just as easily searched for commas in the
copy_buffer(…) method?” The reason why is because the standard convention
for storing strings that have variable length is to NULL-terminate, or end them
with a 0 value. Having strings NULL-terminated helps other methods determine
when to stop reading characters from memory without needing to know the length
of the string beforehand.

Now that we have pointers to the individual fi elds of the NMEA sentence string, we
can return them to the parent Spin object that created the GPS_IO_Mini.spin object
with methods like the following:

pub GPSaltitude
 return GPGGAa[8]

OVERVIEW OF THE SENSORS 331

332 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

pub time
 return GPGGAa[0]

pub latitude
 return GPGGAa[1]

pub date
 return GPRMCa[8]

I have slightly modifi ed the GPS_IO_Mini.spin object to add methods that return the
degree and minute portions of the latitude and longitude separately so that it is easier
to convert within a spreadsheet program. The modifi ed source for the GPS_IO_Mini.
spin object can be found here:

ftp.propeller-chip.com/PCMProp/Chapter_09/Source/GPS_IO_mini.spin

BAROMETRIC PRESSURE SENSOR

A barometric pressure sensor measures atmospheric pressure, which is the pressure
exerted on a unit of area from a mass of air above the surface of Earth. When submerg-
ing into water, the deeper you travel beneath the surface, the greater the pressure will
be built up from the water overhead. When rising from far down in the depths of water
toward the surface, the pressure is alleviated. This is not at all different from the pressure
felt from air when going from sea level to higher altitudes or vice versa. In fact, air does
have mass—and a considerable amount of it. A cubic yard of air at sea level when the
temperature is at 70°F weighs almost two pounds!

Since the air pressure diminishes as you travel into the upper atmosphere, we can
use this knowledge to compute a reasonable altitude measurement. This is where a
barometric pressure sensor is useful because it can measure the pressure felt upon it
and produce a reading we can then use. There are many different applications for a
pressure sensor, one of which is an altimeter for a large or small aircraft. Many people
wonder, “Why not just use a GPS for calculating the altitude?” and the answer would
be “You can.” However, up until the mid 1990s, GPS receivers were not available for
civilian aircraft, so the altimeter based upon atmospheric pressure was the method for
calculating altitude. Also, under certain environmental conditions, the GPS receiver may
not be capable of receiving the satellite radio waves—for example, in a deep canopy of
trees, inside most buildings, or underground.

In our experiment, we will add a small microelectromechanical systems (MEMS)
piezoresistive barometric pressure sensor. MEMS devices are a new, fascinating method
for creating mechanical devices on silicon substrates that were originally meant for
electronics. Through the fabrication of a silicon chip, a “micromachining” process can
produce both mechanical and electrical components, making for orders-of-magnitude-
smaller mechanical sensors and actuators.

The barometric pressure sensor we will be using is an Intersema MS5540C miniature
barometer module, shown in Fig. 9-7. This unique device includes both a piezoresistive

OVERVIEW OF THE SENSORS 333

 Figure 9-7 Intersema barometer module datasheet. (Courtesy of Intersema; for the

latest version consult the MEAS Web site at www.meas-spec.com.)

8002,ht61enuJ300_C0455AD
0005540C1193 ECN 1118

MS5540C (RoHS*) MINIATURE BAROMETER MODULE

• 10–1100 mbar absolute pressure range
• 6 coefficients for software compensation stored

on-chip
• Piezoresistive silicon micromachined sensor
• Integrated miniature pressure sensor 6.2 x 6.4 mm
• 16 bit ADC
• 3-wire serial interface
• 1 system clock line (32.768 kHz)
• Low voltage and low power consumption
• RoHS-compatible & Pb-free*

DESCRIPTION

The MS5540C is a SMD-hybrid device including a precision piezoresistive pressure sensor and an ADC-
Interface IC. It is a miniature version of the MS5534C barometer/altimeter module and provides a 16 bit data
word from a pressure and temperature dependent voltage. MS5540C is a low power, low voltage device with
automatic power down (ON/OFF) switching. A 3-wire interface is used for all communications with a micro-
controller.
Compared to MS5534A the pressure range (measurement down to 10 mbar) has been improved. The MS5540C
is fully software compatible to the MS5534C and previous versions of MS5540. In addition, the MS5540C is from
its outer dimensions compatible to the MS54XX series of pressure sensors. Compared to the previous version
the ESD sensitivity level has been improved to 4kV on all pins. The gel protection of the sensor provides a water
protection sufficient for 100 m waterproof watches without any additional protection.

FEATURES APPLICATIONS

• Resolution 0.1 mbar • Mobile altimeter/barometer systems
• Supply voltage 2.2 V to 3.6 V • Weather control systems
• Low supply current < 5 µA • Adventure or multimode watches
• Standby current < 0.1 µA • GPS receivers
• -40°C to +85°C operation temperature
• No external components required

BLOCK DIAGRAM

VDD

GND

MCLK

SCLK

DOUT

DIN

Input MUX

ADC

Digital
Interface

Memory
(PROM)
64 bits

SENSOR

SGND

+IN

IN
dig.

Filter

Sensor
Interface IC

Fig. 1: Block diagram MS5540C.

* The European RoHS directive 2002/95/EC (Restriction of the use of certain Hazardous Substances in electrical and electronic equipment)
bans the use of lead, mercury, cadmium, hexavalent chromium and polybrominated biphenyls (PBB) or polybrominated diphenyl ethers
(PBDE).

www.meas-spec.com

334 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

barometer and an integrated chip (IC) that samples the analog output and converts it to
digital value, called an analog-to-digital converter (ADC). It also provides a commu-
nications interface such that external devices can simply read the values preconverted
without having to sample the analog voltage. In addition to the piezoresistive sensor,
the MS5540C contains an internal temperature sensor that we will use in our altitude
conversion equations, which will be discussed shortly. The fi rst page of the Intersema
MS5540C datasheet can be seen in Fig. 9-7.

Calculating Altitude from Pressure In the experiment code we will communi-
cate to the barometer and access the compensated pressure and temperature values,
and store those to the SD card, along with the GPS-received telemetry. As part of our
post-analysis, we will look at the differences between the altitude given by the GPS
and the barometer. For now, let’s look at the math on how to compute your altitude
given a pressure reading.

The following is the barometric formula. It is the formula used to calculate pressure
at differing altitudes less than 86 kilometers (km) above sea level.

P P
T

T L h hb
b

b b b

g M

R Lb

= ⋅ + ⋅ −

⋅
⋅∗

()

0

where Pb = Static pressure (Pa)
 Tb = Standard temperature (K)
 Lb = Standard temperature lapse rate (K/m)
 h = Height above sea level (m)
 hb = Height at bottom of layer b (meters; e.g., h1 = 11,000 m)
 R* = Universal gas constant for air: 8.31432 N · m/(mol · K)
 g0 = Gravitational acceleration (9.80665 m/s²)
 M = Molar mass of Earth’s air (0.0289644 kg/mol)

The constants Pb, Tb, Lb, and hb are different, depending on which region of the
atmosphere you are in and are listed in Table 9-2.

In our experiment we will be gathering the data while driving a car around a resi-
dential neighborhood, so we can safely use the values from altitudes extending from
0 to 11,000 m above sea level.

Pb = 101325 Pa

Standard Temperature = 288.15 K

Temperature Lapse Rate = −0.0065 K/m

For additional information regarding the derivation of the barometric formula, see the
following Web site; however, the formula is derived from the ideal gas law (pV = nRT).

http://en.wikipedia.org/wiki/Barometric_formula

http://en.wikipedia.org/wiki/Barometric_formula

Using some math, we can solve the barometric formula for (h) and substitute in the
known variables, arriving at the following altimeter calibration formula:

h
P P

=
− ×1 288 15

0 00198122

0 19026() .

.

./ ref

Thus, given a pressure, we can calculate our height above sea level. The equation
requires the current sea-level–corrected pressure (Pref) for the region in which the sensor
is operating. An aircraft would normally get this pressure value from the radio tower,
but we can fi nd it by going to a weather Web site like www.weather.com. Note, how-
ever, that the typical units given are in inches of mercury when the equation calls for
kilopascals. The conversion is:

1 in of mercury = 3.3860 kPa

Reading the Pressure Sensor Unfortunately, an object wasn’t already created for
the MS5540C barometer module on the Parallax object exchange; therefore, we will
make our own. Investigating the datasheet, we can see that the communications protocol
is similar to SPI communications; however, there are subtle differences. Regarding the
pin connections, we have a data input and data output and a clock that is controlled
by an external “master” device. However, there is no chip select, which is common on
SPI devices.

Another difference between this device’s communication and SPI is that there are no
established data lengths; instead, the barometer uses the notion of start fl ags (three bits
high) and stop fl ags (three bits low) with commands embedded in between. This means
that we cannot use an SPI object from the Object Exchange Web site either. Instead,
we will need to control manually the signals to the chip; this is known as bit-banging.
We will not cover any more details of the communication in this book since the

OVERVIEW OF THE SENSORS 335

TABLE 9-2 BAROMETRIC FORMULA CONSTANTS

 HEIGHT ABOVE STATIC STANDARD TEMPERATURE
 SEA LEVEL PRESSURE TEMPERATURE LAPSE RATE

SUBSCRIPT b (m) (Pa) (K) (K/m)

0 0 101325 288.15 −0.0065

1 11,000 22632.1 216.65 0.0

2 20,000 5474.89 216.65 0.001

3 32,000 868.019 228.65 0.0028

4 47,000 110.906 270.65 0.0

5 51,000 66.9389 270.65 −0.0028

6 71,000 3.95642 214.65 −0.002

www.weather.com

336 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

datasheet dedicates a few pages to it; instead, we will discuss how to read and convert
the barometer’s registers into a temperature-compensated pressure. The MS5540C data-
sheet and Spin source code object to read the pressure and temperature values from the
MS5540C can be found on the FTP site at this location:

Chapter_09/Docs/ms5540c-pressure_sensor.pdf

Chapter_09/Source/abs_pressure_01.spin

Referring to Fig. 9-8, we can see a fl ow chart of operations, provided from the manu-
facturer to execute in order, enabling us to read the pressure and temperature output.
We will refer often to this fi gure while describing the steps to conversion shown in
Fig. 9-8.

The fi rst step is to read the factory 16-bit calibration words out of the barometer’s
memory and convert the words into calibration coeffi cients, which will be used later
in conversion calculations. The coeffi cients are necessary for calculating the correct
pressure and temperature because the output of the sensor is affected by changes in
temperature. Also, the sensor is affected by light, especially direct sunlight, so it’s best
to create an enclosure around the sensor when using it during the daytime or under
changing lighting conditions. The Spin code for reading the coeffi cients is show here:

 cmd := %111_010101_000
 calib1 := read_calib_word(cmd)
 cmd := %111_010110_000
 calib2 := read_calib_word(cmd)
 cmd := %111_011001_000
 calib3 := read_calib_word(cmd)
 cmd := %111_011010_000
 calib4 := read_calib_word(cmd)

 ' Retrieve the calibration bits from the words
 c1 := calib1 >> 1
 c2 := (calib4 & $3F) | ((calib3 & $3F) << 6)
 c3 := calib4 >> 6
 c4 := calib3 >> 6
 c5 := (calib1 & %0001) << 15 | (calib2 >> 6)
 c6 := calib2 & $3F

The read_calib_word(…) method is a private method in the abs_pressure_01.spin
object, and it transmits the appropriate command and returns the calibration 16-bit word.
After the calibration words are received, we use a combination of AND-bit masking,
bitwise-ORing, and bit shifting to extract the calibration coeffi cients.

The next step is to read in the 16-bit data words that contain the current uncompen-
sated pressure and temperature values. Again, we have created a private method that
handles the nonstandard communication and have called it read_data_word(…). An
example of its use is as follows:

OVERVIEW OF THE SENSORS 337

 Figure 9-8 Steps to reading the pressure sensor. (Courtesy of Intersema; for the latest

version, consult the MEAS Web site at www.meas-spec.com.)

S
ys

te
m

in
iti

al
is

at
io

n

Example:

Word1, Word2, Word3 and Word4 (4x16 Bit)

D1 = 16460

D2 = 27856

Start

Convert calibration data into coefficients:
(see bit pattern of Word1-Word4)

Read calibration data (factory calibrated) from
PROM of MS5540

Read digital pressure value from MS5540
D1 (16 Bit)

Read digital temperature value from MS5540

Display pressure and temperature value

Basic equations:

Calculate calibration temperature
UT1 = 8*C5+20224

Calculate temperature compensated pressure

Difference between actual temperature and reference
temperature:

dT = D2 - UT1

Actual temperature:

TEMP = 200 + dT*(C6+50)/210
(0.1°C resolution)

Calculate actual temperature

D2 (16 Bit)

SENST1
OFFT1
TCS
TCO
Tref

TEMPSENS

)tiB51(ytivitisneserusserP:1C
)tiB21(tesffoerusserP:2C

C3: Temperature coefficient of pressure sensitivity (10 Bit)
C4: Temperature coefficient of pressure offset (10 Bit)

)tiB11(erutarepmeTecnerefeR:5C
C6: Temperature coefficient of the temperature (6 Bit)

Word1 = 46940
Word2 = 40217
Word3 = 25172
Word4 = 47212

C1 = 23470
C2 = 1324
C3 = 737
C4 = 393
C5 = 628
C6 = 25

dT(D2) = D2 - Tref

TEMP(D2) = 20°+dT(D2)*TEMPSENS

Offset at actual temperature:

OFF = C2*4 + ((C4-512)*dT)/212

Sensitivity at actual temperature:

SENS = C1 + (C3*dT)/210 + 24576

X = (SENS * (D1-7168))/214 - OFF

Temperature compensated pressure:

P = X*10/25 + 250*10 (0.1 mbar resolution)

OFF(D2) = OFFT1+TCO*dT(D2)

SENS(D2) = SENST1+TCS*dT(D2)

P(D1,D2) = D1*SENS(D2)-OFF(D2)

dT = 2608

TEMP = 391
= 39.1 °C

OFF = 5220

SENS = 49923

X = 23093

P = 9716
= 971.6 mbar

UT1 = 25248

NOTES
1) Readings of D2 can be done less frequently, but the display will be less stable in this case.
2) For a stable display of 0.1 mbar resolution, it is recommended to display the average of 8 subsequent

pressure values.

www.meas-spec.com

338 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

 ' Read in the data words for temperature and pressure
 d1 := read_data_word(%111_1010_000_00) 'Value for data 1
 d2 := read_data_word(%111_1001_000_00) 'Value for data 2

After we have received the current data words for pressure and temperature, we need
to calculate the temperature at which the sensor was factory-calibrated. One thing you
may have noticed from Fig. 9-8 is that this calibration temperature value is constant and
will not change, so to save calculation time, we have moved this outside the conversion
loop. The relevant Spin code is shown here:

 calib_temp := 8*c5 + 20224

Notice that the equation uses integer and not floating-point numbers even
though the calibration temperature can be a fraction of a degree Celsius. At first,
it may not be apparent, but the microcontroller multiplies any fractional number
by 10. This means we can use integer math for all of our calculations, which is
handy since the Propeller does not have dedicated hardware for floating-point
processing.

Now it is time to calculate the actual temperature that the barometer is currently
at while also determining the difference between the calibration temperature and
current temperature and storing it as the variable dt. The code for this step is
as follows; remember that the output variable temperature is 10 times degrees
Celsius.

 ' Compute temperature difference from calibration
 dt := d2 - calib_temp
 'Actual temperature in .1 degrees C
 temperature := 200 + (dt*(c6+50))>>10

Finally, we can calculate the temperature-compensated pressure by fi rst calculating
some intermediate variables: offset, sensitivity, and x. Then we use the intermedi-
ate values to compute the fi nal temperature-compensated pressure in units of 10 times
millibars. The code is shown here:

 ' Calculate temperature compensated pressure in .1 mbars
 offset := (c2<<2) + (((c4-512)*dt)>>12)
 sensitivity := c1 + ((c3*dt)>>10) + 24576
 x := ((sensitivity * (d1-7168))>>14) - offset
 pressure := ((x*10)>>5) + 2500

The abs_pressure_01.spin object requires one new cog for its operation and provides
public methods for accessing the last read pressure and temperature that is read from the
sensor four times a second (4 Hz). For our experiment, these variables will be logged
to an SD card.

SECURE DIGITAL CARD

The Propeller has no built-in nonvolatile memory (memory that doesn’t get erased when
power is removed). The Propeller Demo Board does employ an external EEPROM used
for programming the device, but we want to use something more portable, removable,
and easily recognizable by a PC for analyzing the data log fi les. For this reason we have
elected to use a Secure Digital (SD) card connected via SPI.

SD cards are essentially fl ash memory devices that are a collection of sectors.
Each sector is usually 512 bytes, and there can be millions of sectors on very large
SD cards. SD cards have no inherent fi le system. Thus, FAT16, FAT32, NTFS, Linux
fi le systems, and so on have no idea how to read SD cards. Therefore, someone
has to write a driver interface that translates, if you will, the SD card sectors into
a fi le system. For example, the only operations you really need to implement on a
FAT16/32 fi le system are the abilities to read and write a sector. The SD protocol
and hardware supports this, so to support the FAT system, you have to write a driver
that implements the FAT fi le system on the SD card and translates things like the
directories, boot records, and so on. This is a complex business and outside the scope
of this book. Fortunately for us, an object has been uploaded to the Parallax Object
Exchange Web site that allows the Propeller to read and write fi les, among other
things, to an SD card using the FAT16 fi le system. Before we discuss this SD card
object; however, let’s fi rst talk about what would be required if you were to write
your own SD card interface.

Let’s start by looking at how SD commands are formatted. The fi rst thing to remem-
ber is that everything is sent to and received from the SD card over the SPI interface
one byte at a time; all commands, data, etc. are composed of single- or multiple-byte
transactions. Thus, all the communications take place over the SPI write and read byte
methods. The SD layer is on top of this.

The complete SD card specifi cation is a monster of a document, not because of its
length, but because of its lack of clarity. For those interested, you can read all about it
in the SD_SDIO_specsv1.pdf located here:

Chapter_09/Docs/SD_SDIO_specsv1.pdf

Luckily, we aren’t using the “SD protocol mode” but rather the “SPI protocol mode,”
which is much easier to deal with. Of course, it’s not as fast as SD mode, nor does SPI
mode have all the features of SD. But SPI mode allows us to read and write sectors of
the SD card, and that’s all that matters. Also, in SPI mode, both SD cards and MMC
cards work in the same way, so the software, drivers, and our experiment discussed later
would theoretically work with MMC cards as well.

In any event, all communication with the SD cards is done via the SPI interface, so
when we talk about writing and reading, an SPI communications object interface is
obviously used. This differs from “SD” mode communications, thus we want to place
the SD card into “SPI” mode. This is actually the fi rst step when initializing the SD
card. Figure 9-9 shows how commands are formed for the SD card.

OVERVIEW OF THE SENSORS 339

340 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

They are six bytes long and consist of the following parts:

Byte 1 : 8-bit command ID

Byte 2, 3, 4, 5 : 32-bit address

Byte 6 : 8-bit CRC checksum

The 32-bit address must be formatted in big-endian format—that is, high byte to low
byte. This is the opposite of the Intel format, which is little-endian. Therefore, if you
want to send $FF_AA_00_11 in big-endian, you would send $FF, followed by $AA,
$00, and fi nally $11 to complete the address. Of course, the address word might not be
important for the particular command; if not, always make it $00_00_00_00. Finally,
the CRC checksum byte (CRC stands for cyclic redundancy check) is a byte that you,
the sender, must compute based on bytes 1..5. The SD card, after receiving bytes 1..5,
compares the CRC you send to it, and it computes its own; if they are not the same, the
SD card will return an error. Also, when the SD card receives a command, it sends back
a response along with a CRC. You are free to inspect the CRC if you wish. After you
send the six-byte command to the SD card, it always responds with a one-byte response
code. These response codes mean different things in different situations, but generally
are used to catch errors. Figure 9-10 shows the bit encoding for the response codes.

CRC CALCULATION

When the SD is in SPI mode, it doesn’t require CRC bytes; therefore, the CRC
bytes can be anything. However, before the SD card is in SPI mode, it does require
that the CRC be correct. If you’re interested in how CRC bytes are computed, try
this link:

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Note: SD and MMC cards use the CRC-7 method.

The next question, of course, is what commands does the SD card support? Table 9-3
lists the complete command set for SD SPI mode.

 Figure 9-9 Format of SD card commands in SPI mode.

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Notice CMD0. This command is very important and literally the fi rst command
that we need to issue to the SD card. This command tells the SD card to switch into
SPI mode. Therefore, we are going to issue this command fi rst, after which the SD card
should respond with a response byte of $01 to indicate success. This brings us to
Table 9-4, which is a short listing of SD SPI commands that must be supported and
their respective response bytes.

Logging to the SD Card Through the use of the SD SPI commands, a processor
can read from and write to an SD card a sector at a time. The next step would be to
implement software for reading a fi le system from those sectors. We will not cover fi le
systems in this book; however, for further reading see the following:

Chapter_09/Docs/MS_fat_white_paper.doc

http://en.wikipedia.org/wiki/File_Allocation_Table

Instead of creating our own object for SD card support, we will be using the FSRW
Spin object by Radical Eye Software. Again, this can be found on the Parallax Object
Exchange Web site, or it can be found here:

Chapter_09/Source/CODE/fsrw.spin

Chapter_09/Source/CODE/sdspi.spin

The FSRW SD card object has a number of public methods for mounting, opening,
reading, and writing to a fi le, which are documented in Table 9-5.

Figure 9-10 Response code binary bit
encoding format.

IDLE STATE

SD CARD RESPONSE FORMAT

ERASE RESET

ILLEGAL COMMAND

COMMAND CRC ERROR

ERASE SEQUENCE ERROR

ADDRESS ERROR

PARAMETER ERROR

0

7 6 5 4 3 2 1 0

OVERVIEW OF THE SENSORS 341

http://en.wikipedia.org/wiki/File_Allocation_Table

TABLE 9-3 COMMAND LIST FOR SD SPI MODE

CMD ID ABBREVIATION SDMEM MODE SDIO MODE COMMENTS

CMD0 GO_IDLE_STATE Mandatory Mandatory Used to change from
 SD to SPI mode

CMD1 SEND_OP_COND Mandatory

CMD5 IO_SEND_OP_COND Mandatory

CMD9 SEND_CSD Mandatory CSD not supported
 by SDIO

CMD10 SEND_CID Mandatory CID not supported by
 SDIO

CMD12 STOP_TRANSMISSION Mandatory

CMD13 SEND_STATUS Mandatory Includes only
 SDMEM information

CMD16 SET_BLOCKLEN Mandatory

CMD17 READ_SINGLE_BLOCK Mandatory

CMD18 READ_MULTIPLE_BLOCK Mandatory

CMD24 WRITE_BLOCK Mandatory

CMD25 WRITE_MULTIPLE_BLOCK Mandatory

CMD27 PROGRAM_CSD Mandatory CSD not supported
 by SDIO

CMD28 SET_WRITE_PROT Optional

CMD29 CLR_WRITE_PROT Optional

CMD30 SEND_WRITE_PROT Optional

CMD32 ERASE_WR_BLK_START Mandatory

CMD33 ERASE_WR_BLK_END Mandatory

CMD38 ERASE Mandatory

CMD42 LOCK_UNLOCK Optional

CMD52 IO_RW_DIRECT Mandatory

CMD53 IO_RW_EXTENDED Mandatory Block mode is
 optional

CMD55 APP_CMD Mandatory

CMD56 GEN_CMD Mandatory

CMD58 READ_OCR Mandatory

CMD59 CRC_ON_OFF Mandatory Mandatory

ACMD13 SD_STATUS Mandatory

ACMD22 SEND_NUM_WR_BLOCKS Mandatory

ACMD23 SET_WR_BLK_ERASE_COUNT Mandatory

ACMD41 SD_APP_OP_COND Mandatory

ACMD42 SET_CLR_CARD_DETECT Mandatory

ACMD51 SEND_SCR Mandatory SCR includes only
 SDMEM information

Note: The command code IDs start at $40 (64). For example, CMD0 = $40 + 0 = $40, CMD17 = $40 + 17 = $51.

342

TABLE 9-5 AVAILABLE METHODS FROM FSRW SD CARD OBJECT

PUBLIC METHOD NAME DESCRIPTION

mount(basepin) Resets the SD card connected to the base pin into SPI mode and
 attempts to read the FAT16 fi le system

popen(s, mode) Opens a fi le named s for read, write, or append operation

pclose Closes and fl ushes the header and write buffer to the previously
 opened fi le

pread(ubuf, count) Reads from the previously opened fi le and stores into ubuf with count bytes

pwrite(ubuf, count) Writes from ubuf into the previously opened fi le with count bytes

pputc(c) Outputs a single byte, c, to the previously opened fi le

pgetc Reads and returns a single byte from the previously opened fi le

pfl ush Flushes any unwritten header metadata and write buffers to the previously
 opened fi le

opendir Closes the previously opened fi le and prepares the read buffer for calls to
 nextfi le

nextfi le(fbuf) Finds the next fi le in the root directory folder and copies its name in 8.3
 string format into fbuf

SDStr(ptr) Outputs the NULL-terminated string ptr to the previously opened fi le

SDdec(value) Outputs the 32-bit long value to the previously opened fi le

SDhex(value,digits) Outputs the 32-bit long value to the previously opened fi le with digits count
 of hexadecimal characters

SDbin(value,digits) Outputs the 32-bit long value to the previously opened fi le with digits count
 of binary characters

343

TABLE 9-4 SUBSET OF SD SPI COMMANDS NEEDED TO IMPLEMENT
SD CARD DRIVERS

COMMAND MNEMONIC ARGUMENT RESPONSE (2) DESCRIPTION

0 ($40) GO_IDLE_STATE None $01 Resets SD card and
 places in SPI mode

1 ($41) EXIT_IDLE_STATE None $01 Exits reset mode

17 ($51) EAD_SINGLE_BLOCK(3) Address $00 Reads a block at byte
 address

24 ($58) WRITE_BLOCK(4) Address $00 Writes a block at byte
 address

55 ($77) APP_CMD(1) None $00 Prefi x for application
 command

41 ($69) SEND_APP_OP_COND(1) None $00 Application command

Note 1: The last two commands are not mandatory, but help differentiate if the card is SD or MMC. Only SD
can reply to these commands.
Note 2: Refer to Fig. 9-10 for encoding of response byte.
Note 3: When reading a block, a data token of $FE will be received after the initial response code of $00. Then
the next bytes will be the sector data.
Note 4: After the write command is sent, the SD card expects the data token $FE to follow, signifying the host
is ready to send bytes.

344 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

Main Spin Object
The main Spin object is the code that ties all the sensor collection and logging together,
and it runs out of Cog 0 on startup. The main Spin object is responsible for creating and
initializing the GPS serial parser object, the barometer pressure sensor object, the TV
terminal for display purposes, and the SD card fi le system object. On top of managing
these additional objects, it is continuously reading two input pins that are connected to
pushbutton switches that control starting and stopping the SD card fi le log. By using
switches and allowing the user to start, stop, and restart, logging multiple data collec-
tions may be achieved on a single SD card. The source code to the main object may be
found at the following location:

Chapter_09/Source/Main_01.spin

We will not be thoroughly explaining each portion of the source code in this chapter;
however, it is thoroughly commented for easy understanding. Instead, we will talk about
the operation as a whole. Take a look at the fl ow chart describing the inner workings
of the main object in Fig. 9-11.

Referring to Fig. 9-11, the fi rst thing the main Spin object does after startup is to
initialize the GPS, barometer, and TV terminal objects. Each of these objects starts a
separate cog for execution as they begin their data collecting and TV output operations.
The next step is to test whether the Propeller can successfully communicate and read in
the FAT16 fi le system of the attached SD card. This is a reasonable test because the SD
card may not be inserted and the user wishes to only watch the TV terminal display.

Now if the SD card was not found, the TV terminal is updated with the message “Failed
to mount SD.” After a brief period—enough for users to see the TV terminal message—
the screen is cleared and we enter into an infi nite loop that reads the current states from
the GPS and barometer objects and prints them to the TV terminal. If a user wishes to
insert a card after startup, he would need to reset it for the SD mounting test. This would
be a good starting place for improving the main object, but I leave that up to you.

If an SD card was found, the directory contents of the SD card in the root folder
are read and displayed to the screen. Once again, the execution pauses so that users
may read the directory listing, and then the main object enters into the infi nite repeat
loop. Likewise, when the SD card is not mounted, the GPS and barometer outputs
are displayed to the TV terminal. Next the Propeller tests to see if we are currently
recording. Remember the user must initiate the recording with a pushbutton switch. If
the Propeller is recording, the SD card is written to using a combination of the FSRW
methods SDStr(…), SDdec(…), and pflush().

It is important that we call pflush() after every write to the SD card in our applica-
tion. This is for the sake of the user in case he or she forgets to stop the recording before
ejecting or powering down the system. Without pflush() being called, the fi le header
metadata would not be written to the SD card and a PC’s operating system would not
be able to recognize the fi le length and location without it.

Finally, regardless of whether the data is being recorded, we arrive at the input
pushbutton switch test. If the SD card is currently being recorded, we test to see if the

STOP pushbutton switch is pressed. If so, we stop recording and close the fi le. Now if
we were not recording to the SD card and the START pushbutton switch is pressed, we
fi rst look for a unique fi le name to open. To locate a unique fi le name, we search the
root folder for a fi le named sensorXX.log, where XX is a number between 00 and 99.
Once a suitable fi le name is found, we open it for writing.

Now a TV terminal is great for debugging purposes—for example, to see if the GPS
receiver has three or more satellites or whether the SD card was mounted properly, and
so on. However, for our experiment, we will be taking the hardware on the road for a
test drive, and we will not be bringing along a TV. To aid us in debugging when a TV
is not readily available, we will make use of a number of LEDs. The following lists the
LED outputs we are using along with their description:

■ Mount SD: If the SD card was mounted properly, on startup, this LED will be lit.
■ GPS Satellites: If the GPS has three or more satellites, this LED will be lit.

 Figure 9-11 Flow chart of main Spin object.

MAIN SPIN OBJECT 345

346 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

■ Heart Beat: Each time through the main object’s infi nite repeat loop, this LED will
toggle. This is useful in helping the user see that all is working well.

■ Pressure Good: This LED is lit when the temperature read from the barometer is
within normal operating ranges, meaning we have established communication and
are converting values properly.

■ Recording: This LED is lit when the Propeller is in a state that is recording data to
the SD card.

Experiment
In the experiment for this chapter, we will be taking the prototype data-collecting unit
and traveling around a residential neighborhood. This neighborhood in particular con-
sists of many different inclines with varying steepness. Since one of our main objectives
is to compare and contrast the performance of the GPS altitude versus the barometric
pressure sensor, having a nonfl at terrain to travel over is ideal.

In addition to altitudes, we are interested in other measurements, such as the GPS
reported speed. For our experiment we will be traveling between 0 and near 60 miles per
hour. All collected data will be stored to the SD card and then postprocessed in a spread-
sheet software program such as Microsoft Excel, Google Docs, or even OpenOffi ce.org.
In order to facilitate easy importing into a spreadsheet program, we are going to output
data captured in the main Spin object as comma-separated values. With the exception
to the fi rst line that serves as a header, each line of the ASCII text fi le log will contain
a series of ASCII number strings separated by commas. An example of the text log fi le
output is shown here:

30, 21.1403, N, 097, 54.2948, W, 00201.1, 000.0, 05, 040942, 210509, 072.3, 245, 9889

30, 21.1403, N, 097, 54.2948, W, 00201.1, 000.0, 05, 040943, 210509, 072.3, 245, 9889

30, 21.1403, N, 097, 54.2948, W, 00201.1, 000.0, 05, 040944, 210509, 072.3, 245, 9890

An explanation of each fi eld, from left to right, can be found at the beginning of the
log fi le, and for simplicity, is listed here:

■ Latitude in degrees
■ Latitude in minutes
■ Northern or southern hemisphere
■ Longitude in degrees
■ Longitude in minutes
■ Western or eastern hemisphere
■ GPS altitude
■ GPS speed
■ Number of satellites locked on
■ Time (Greenwich Mean Time)
■ Date (DDMMYY format)

■ GPS heading
■ Barometer temperature (10 times Celsius format)
■ Barometer pressure (10 times millibar format)

For this experiment, we have already gone ahead and collected a long dataset that
can be found here:

Chapter_09/Source/Logs/SENSOR_5_20_2009.csv

Notice that we renamed the dataset so that it ends with a .csv fi le extension. This
makes it easier for programs like Excel and Google Docs to import the data. When read
into a spreadsheet program, all data fi elds will be separated into individual cells, where
each row of the spreadsheet referenced a sampling of data in time.

DATA ANALYSIS

Once the data has been imported into a spreadsheet program, we can condense and
convert some of the fi elds to prepare them for plotting or graphing. The fi rst thing to
convert is to change the latitude/longitude format from degrees and minutes to decimal
degrees. For example:

70 degrees, 30.6 minutes = 70°, 30.6′ to 70.51 degrees = 70.51°

This conversion is as simple as taking the minute portion and dividing it by 60 and
adding it to the degree portion. Also, we must take into account what hemisphere the
data is collected in. If the data is collected in the southern hemisphere, we need to mul-
tiply the latitude decimal degrees by negative one. Likewise, if the GPS receiver was
in the western hemisphere, we would need to multiply the longitude decimal degrees
by negative one. We are not going to explain the details of entering formulas into a
spreadsheet program here; instead, we have already imported and data-manipulated the
CSV log fi le and stored it as a Microsoft Excel (XLS) fi le. This fi le is located here:

Chapter_09/Source/Logs/SENSOR_5_20_2009.xls

In addition to the latitude/longitude conversion, the Excel fi le converts the pressure
from .1 millibars to kilopascals for use in the altimeter calibration formula we discussed
previously. Now in order to convert the measured pressure into altitude above sea level,
we fi rst need to fi nd out the local region’s air pressure at mean sea level (MSL). This
is known as the altimeter setting. Since this value is constantly changing depending on
the weather, like a high- or low-pressure system moving in from a storm, we need to
obtain this information beforehand. In fact, this is how aircraft operates because they
will radio the tower before takeoff and adjust their altimeter accordingly. This informa-
tion can be obtained from a local airport or more easily obtained from a weather Web
site. For example, we recorded the local air pressure previous to the drive test at 32.02 in
of mercury, or 101.65 kPa, from www.weather.com.

EXPERIMENT 347

www.weather.com

348 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

The Excel spreadsheet contains a column for the converted pressure sensor from kilo-
pascals to altitude in meters above sea level. Now that we have this pressure converted,
we can compare it to the GPS-reported altitude. Figure 9-12 shows an overlaid plot of
the GPS altitude and the pressure sensor altitude.

Notice in Fig. 9-12 how the GPS-reported altitude and the pressure sensor’s measured
altitude are closely matched, especially near the end of the dataset. A possible explana-
tion for the beginning of the dataset being mismatched is that when data collection had
begun, the GPS was still acquiring and locking onto more satellites. As the receiver
found these other satellites, its positional accuracy increased. One interesting experi-
ment you might try is to adjust the spreadsheet cell containing the local region’s air
pressure. Notice how the overall altitude drops or rises when modifying this cell— this
shows how important it is that airplanes receive the correct pressure information from
the airport.

Plotting GPS Tracks In addition to altitude, we have a number of other fi elds we
can plot. We could plot the temperature reported from the pressure sensor over time or
the number of satellites the GPS was locked onto. Probably the most interesting plot
comes from plotting the GPS location tracks. A great Web site that assists with plotting
GPS tracks is located at www.gpsvisualizer.com.

The GPS Visualizer Web site is a free do-it-yourself mapping Web site that allows
users to upload their waypoint tracks and plot the data overlaid onto a number of differ-
ent maps, including aerial photos, U.S. Geological Survey (USGS) topographical maps,
county outlines, satellite photos, and much more. Data is uploaded as either plaintext
(tab-delimited or comma-delimited) or Excel spreadsheet data, or you can even copy
and paste into an edit box on the Web site.

350
GPS Alt (m)

Altitude (m)
300

250

200

150

100

50

0

1 56 11
1

16
6

22
1

27
6

33
1

38
6

44
1

49
6

55
1

60
6

66
1

71
6

77
1

82
6

88
1

93
6

99
1

10
46

11
01

11
56

12
11

12
66

13
21

13
76

14
31

14
86

15
41

15
96

16
51

17
06

17
61

18
16

18
71

19
26

19
81

20
36

20
91

21
46

22
01

22
56

23
11

23
66

24
21

24
76

25
31

25
86

26
41

26
96

27
51

28
06

28
61

 Figure 9-12 GPS altitude versus pressure altitude.

www.gpsvisualizer.com

We are now going to go through a simple step-by-step tutorial on how to format and
upload GPS tracking data. For those who do not want to manually format their data
or who want to skip to the plotting section, we have supplied preformatted comma-
separated values (CSV) fi les located here:

Chapter_09/Source/Logs/GPSVisualizer_Lat_Long.csv

The GPS Visualizer Web site accepts many different data types, but we will choose
to stick with a simple ASCII comma-separated fi le. In order for the GPS Visualizer Web
site to correlate each column of data with its respective type, there needs to be a header
row at the top. For example, to plot a simple GPS latitude/longitude track, we need the
fi rst row to look like the following:

Type, Latitude, Longitude

Capitalization and order do not matter as long as the data on subsequent lines follow
the same order. The latitude and longitude fi elds need to be in decimal degrees, and the
type fi eld needs to contain the letter “T,” which stands for “track.”

✓ Organize your data in an Excel spreadsheet.

Next we need to copy the data from the Excel spreadsheet to the CSV fi le. When
creating the CSV fi le, you will most likely start off with a separate spreadsheet, and
when you are fi nished, save the output as a comma-separated values fi le. When you
have fi nished, your fi le should look similar to the following snippet of data:

Type, Latitude, Longitude
T, 30.35233833, -97.90491333
T, 30.35233833, -97.90491333
T, 30.35233833, -97.90491333
T, 30.35233833, -97.90491333

✓ Save your Excel spreadsheet as a CSV fi le.

It is now time to load the data into the Web site for display. On the home page, there
is an edit box for a fi le upload (see Fig. 9-13).

 Figure 9-13 File upload box.

EXPERIMENT 349

350 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

✓ Click the Browse button or click in the edit box, and a fi le browser window will open.
✓ Navigate and select your CSV fi le. In the Web site under Choose an output format:,

select Google Maps.
✓ Now click the Go button, and after a few seconds the Web site will update with a

GPS track overlaid onto an aerial photograph.

The aerial photograph is an interactive control that allows you to zoom in and out and
pan around the GPS track. In the upper-right corner of the map you can select between
different map types. You can even save the map and share it with others using another
Web site called www.EveryTrail.com.

Now that you have the basics of plotting a GPS track, you can play around with
some of the advanced options on the GPS Visualizer Web site. For example, we can add
another fi eld to the CSV fi le that contains the GPS speed. In this case, we would add
another header called speed; then when we go to plot the data, the GPS track will be
color-coded, as shown in Fig. 9-14. We have created a couple different CSV fi les with

 Figure 9-14 GPS Google Map track with speed.

www.EveryTrail.com

speed and altitude so that you can try out the advanced options on the GPS Visualizer
Web site. The extra CSV fi les are located here:

Chapter_09/Source/Logs/GPSVisualizer_Lat_Long_Alt.csv

Chapter_09/Source/Logs/GPSVisualizer_Lat_Long_Speed.csv

One more feature of the GPS Visualizer Web site that I would like to point out
is that they allow you to export your data as a KMZ or a KML fi le. KML stands for
Keyhole-Markup Language, and it is essentially an XML fi le with tags recognized by
their program. Keyhole Software created a mapping program called Earth Viewer that
they sold mostly to the government until they were acquired by Google in 2004. After
Google purchased the company, they renamed the software Google Earth and released a
free version in 2005. The KML fi le allows users to input map markers, tracks, pictures,
and even moving objects into Google Earth. A KMZ fi le is Zip-compressed container
around the KML fi le. This means that we can upload our simple ASCII CSV fi les to the
GSP Visualizer Web site and then download a KMZ fi le for viewing in Google Earth
stand-alone software.

Summary
Throughout this chapter we have covered how to interface a Parallax Propeller to a GPS
receiver and a barometric pressure sensor module. By using the Propeller’s multicore
CPU, we were able to isolate separate execution paths without the need for diffi cult
threading and semaphore locking that you would fi nd on a conventional CPU. This
proved especially useful when we communicated with the barometric pressure sensor
because of its nonstandard communications protocol. If instead we were to interface
this sensor to a traditional single-CPU microcontroller, it would take away precious
computation time from the main process in order to service the communications.

In addition to communicating with the sensors, we discussed how to store the log data
to a Secure Digital (SD) card. An SD card is ideal for use with embedded processors
because of its large capacity in a small footprint. Using Parallax’s Object Exchange
(OBEX) Web site, we were able to fi nd suitable software that facilitated the complex
SD card communication and fi le system handling.

After completing a test drive, the SD card was removed from the experimental
hardware and inserted into a PC for post-analysis. We discussed equations to convert
barometric pressure to altitudes and plotted the outputs in both a spreadsheet program
and online mapping tools such as www.GPSVisualizer.com.

A number of improvements could be made to this experiment. First, we could
always add sensors. We could add a barometric (absolute) pressure sensor, as well
as a differential pressure sensor such as the Freescale Semiconductor MPX5050. By
using a differential pressure sensor, we can connect a tube to one of the ports on the
sensor and point it out toward the front of the car. The second port is a static reference.

SUMMARY 351

www.GPSVisualizer.com

352 PORTABLE MULTIVARIABLE GPS TRACKING AND DATA LOGGER

By measuring the difference between the two pressures, we can compute the speed of
the moving sensor. From here, we can add three (or two, depending if you have dual
axis) rate gyros and a three-axis accelerometer (Hitachi H48C), and by the time we are
done, we would have a full-blown autopilot system with the Propeller at the center.

Changes to the code could include outputting directly to a KML fi le so that a user
could open up the SD card in a fi le explorer and directly import the track to Google
Earth. Another option would be to skip an SD card altogether and connect the Propeller
directly to a laptop computer while driving around and streaming the location-based
data over a serial port. A program running on the laptop could then receive the data and
save to a KML fi le while Google Earth is confi gured to automatically check for updates
at a specifi ed rate. By doing this, you have essentially created a moving map display!

Exercises
1 Modify the Main_01.spin so that the fi le extension on the output fi le is “.csv” instead

of “.log.”
2 Modify the Main_01.spin such that instead of outputting a comma-separated values

fi le it outputs a KML fi le for use with Google Earth.
3 Add to the NTSC terminal display so that it shows the current logging status, such

as “Logging: On/Off.”
4 Add a digital compass—for example, the Hitachi HM55B compass module, available

from Parallax, and record the logged heading. Then compare the compass’s heading
to the GPS’s heading and explain any discrepancies.

5 Shine a fl ashlight onto the barometric pressure sensor and witness the change in pres-
sure recorded. Try varying the intensity of the light by applying a piece of fabric
over the fl ashlight before shining it onto the sensor.

353

10
USING THE PROPELLER

AS A VIRTUAL PERIPHERAL

FOR MEDIA APPLICATIONS

André LaMothe

Introduction
In this chapter, we are going to explore one of the most exciting uses of multicore pro-
cessing; using the multicore processor as a slave/server to a host/client processor or
computer. The multicore slave is issued commands via an RPC (remote procedure call)
architecture, enabling the multicore processor (the Propeller chip, in our case) to execute
commands on multiple processors with nearly zero load to the host/client issuing the
commands. With this kind of architecture and a proper communications protocol(s),
various virtual peripherals can be loaded into the multicore processor and executed on
multiple cores, and the client/host can then communicate to these modules over a simple
serial link and issue remote commands. Moreover, more advanced software could be
developed that allows the host/client to request peripherals be loaded “on demand,”
creating a truly robust system.

Based on the model developed in this chapter, you will be able to not only control the
Propeller chip over a simple RS-232 serial link, but also create a platform that can be
used for SPI (serial peripheral interface) or other high-speed “chip-to-chip” low-level
wired links with little modifi cation. With that in mind, here’s what’s in store:

■ Introduction, setup, and demo
■ System architecture
■ Remote procedure call primer
■ Virtual peripheral driver overview
■ Client/host console development

354 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

■ Exploring the command library for the slave/server
■ Enhancing and adding features to the system
■ Exploring other communications protocols

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_10.

Overview, Setup, and Demo
Before we start into the technical material of this chapter, let’s fi rst discuss the goal of
the design, the hardware setup, the software, install anything needed, and, in general,
get ready for the project. To enable as many people as possible to use this project “out of
the box,” it was decided to use a standard piece of hardware: the Propeller Demo Board
Rev. C (Revisions A and B will work as well with slight changes to connections).

Referring to Fig. 10-1, the project requires an NTSC TV, VGA monitor, PS/2 key-
board, an audio amplifi er (the NTSC TV’s audio input will work fi ne), and the Parallax
Demo Board Rev. C or better.

In addition, you are going to need a PC to run the serial communications software
on. Technically, any PC that supports the FTDI VCP USB-to-serial drivers connection
will work. The project simply needs to be compiled and downloaded to the Propeller

 Figure 10-1 Overall system block diagram of what’s needed for the setup.

OVERVIEW, SETUP, AND DEMO 355

Board; once this is accomplished, you don’t need to use the Propeller Tool anymore
(which is only offi cially targeted to PCs running Windows). Nonetheless, this project
requires a standard RS-232 communications via a USB-to-serial connection. And since
the USB chip on the Propeller Demo Board is an FTDI chip, your PC must support the
driver. You can fi nd out more and download the latest FTDI drivers from the Parallax
and FTDI sites here:

www.parallax.com/usbdrivers

www.ftdichip.com/FTDrivers.htm

To compile and upload the code into the Propeller Demo Board, you must have a
copy of the Propeller Tool (version 1.05.01 or better loaded on your system) and the
PC running Windows connected to the Propeller Demo Board over a USB A to Mini
B cable.

HARDWARE SETUP

The hardware setup for the project is rather straightforward. With the Propeller Demo
Board in hand, make the following connections to the various media devices, as shown
in Fig. 10-2:

1 Connect the Video output of the board to your NTSC TV’s RCA video input.
2 Connect the Audio output of the board to your NTSC TV’s RCA audio input or

headphones. (Note: Older versions of the Propeller Demo Board have RCA jacks
rather than headphone jacks, so you won’t need a stereo-to-RCA converter cable
with older versions.)

3 Connect the VGA out of the board to the VGA monitor.
4 Connect a PS/2 keyboard to the board.
5 Connect the Propeller Demo Board to the PC via the mini-USB cable.

Of course, you need to have the Propeller Demo Board 9 V wall adapter plugged in
and powered on. Also, remember that step 4 is not only so the PC can ultimately com-
municate with the Propeller Demo Board via a serial terminal, but also so you can use
the Propeller Tool to program the board itself; thus, the single USB serial connection
is used for both programming and experimenting.

Tip: Later, you might want to add another serial port to the Propeller Demo
Board with an extra Parallax USB2SER adapter (Part #28024). That way, you don’t
have to play games with the single communications port for both programming
and serial communications, and you can simply connect the extra serial port on
another pair of free Propeller pins. The problem is that both the Propeller Tool and
serial terminal programs like to “hold” the serial line. The Propeller Tool seems
to release it after programming, but early versions didn’t. However, most serial
terminal programs must be closed before releasing the serial line, even though
they are not connected.

www.parallax.com/usbdrivers
www.ftdichip.com/FTDrivers.htm

356 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

(a) Top view of board

(b) Power (c) Keyboard (d) VGA

(e) NTSC Video (f) Audio (g) USB serial

 Figure 10-2 Making the hardware connections.

SOFTWARE SETUP AND INSTALLATION

If you haven’t installed the Propeller Tool, do that now. You can download the latest
version of the Propeller Tool from the Downloads link at this Parallax site:

www.parallax.com/Propeller

Assuming you have the Propeller Tool installed and set up (refer to Chapter 2 for
detailed instructions), confi rm you have communications with the Propeller Demo
Board with the Propeller Tool’s Run → Identify Hardware command, and you can
compile and download code to the board. Once you have that set up, the only remaining
piece of the puzzle is to load a serial terminal program (the Parallax Serial Terminal
doesn’t support VT100 emulation, so we need something a little more complete), since
this is what is used to communicate with the CCP (Console Command Program) that
we are going to run on the Propeller Board to interface with the virtual peripherals via
serial ASCII human-readable commands.

There are a number of good terminal programs out there—of course, the most obvi-
ous is HyperTerminal, but it is very buggy, locks up, and is a system-resource hog. I
suggest the following terminal programs:

PuTTY: http://chiark.greenend.org.uk/~sgtatham/putty/download.html

ZOC: http://www.emtec.com/zoc

Absolute Telnet: http://www.celestialsoftware.net

You can download all of them from these links and/or from Download.com.
In all cases, we are going to set them up for serial communications over COMnn
(where nn is the COM port your USB driver installed the driver at) with the fol-
lowing settings:

■ Baud: 9600
■ Parity: None
■ Data: 8 bits
■ Stop Bits: 1
■ Terminal type: VT100
■ Local echo: Off
■ Handshaking: Off.

For example, Fig. 10-3 shows a screenshot of PuTTY’s setup for my PC, which has
the USB serial port on COM27.

Tip: Use Control Panel → System → Hardware → Device Manager to locate
the new USB serial port. Typically, it will be a rather high number, like COM27
or something ridiculous. You will need this to set up your serial terminal
program.

OVERVIEW, SETUP, AND DEMO 357

www.parallax.com/Propeller
http://www.emtec.com/zoc
http://www.celestialsoftware.net
http://chiark.greenend.org.uk/~sgtatham/putty/download.html

358 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

TEASER DEMO

Let’s go ahead and try the system out and see if we can get it working before delving
into how the system works and design issues. To get the program to work, you need to
set up the hardware, including the Propeller Demo Board and all the peripheral con-
nections to TV, VGA, keyboard, and so on. Then the software must be compiled and
loaded into the board itself via the Propeller Tool. Finally, you need to launch a serial
terminal and connect it to the USB serial port that the FTDI chip in the Propeller Demo
Board is currently using. Then with the terminal program you will make a connection
to the Propeller Board and start throwing commands at the CCP, which processes the
commands, parses them, and then passes calls to each of the cores running the various
media drivers. Basically, you need to make sure that the serial terminal is on the right
COM port and then press Reset on the Propeller Demo Board so everything starts up.

 Figure 10-3 A screenshot of PuTTY setup for my PC with the USB serial port
on COM27.

Then you will see the CCP display some initialization, as well as see output on the
NTSC and VGA, and hear some sounds—these are all the systems booting.

Compiling the Demo To load the demo into your Propeller Demo Board, locate the
top-level source fi le in the following directory on the ftp.propeller-chip.com site:

PCMProp/Chapter_10/Source/prop_serial_slave_010.spin

This fi le, of course, relies on a number of other objects, but they are all within the
same /Source directory, so the program should compile and download with no problems.
Also, there is an archived .zip of the entire project within the /Source directory.

Once you have compiled and downloaded the program into the fl ash memory of the
Propeller Demo Board (F11 is the shortcut on the Propeller Tool), the program will
immediately start booting and displaying on the VGA and NTSC, making sounds, and
outputting to the serial terminal. If you don’t have all these devices hooked up, no
worries—just hook them up and press the Reset button on the Propeller Board.

Putting the Demo through Its Paces Figure 10-4 shows photos of what you
should see on your NTSC and VGA monitors as the system boots.

Your terminal should also show some initialization and startup strings, along with a
fi nal prompt, as shown in Fig. 10-5.

At this point, we are ready to go and start typing commands to the CCP. Let’s try a
couple of commands and see if things are working. There are two kinds of commands: local
commands and remote commands. Local commands simply control the terminal program
and are processed locally by the terminal core processor that is running the command-line
interpreter. Local commands are used to talk to the terminal, set things, change fonts, query
the time, and so forth. I have only implemented a couple of local terminal commands for
illustrative purposes, but you can add more. In a moment, we will see these in action.

OVERVIEW, SETUP, AND DEMO 359

 Figure 10-4 Boot process as the system starts out as output on the NTSC (left) and
VGA (right) monitors.

360 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

The remote commands are more useful and do the actual heavy lifting. These com-
mands actually send messages to the various cores (cogs) running the media peripherals
and hence allow us to control the cores via the serial terminal. We can do things like
print to the NTSC terminal, play a sound, read the keyboard, and so on. All of these
things are being processed by the cores of the Propeller in parallel, but we can access
them remotely over the serial terminal via commands.

Local Commands Sample HELP—This command simply prints out the system
HELP. Go ahead and type “HELP” into the CCP and watch the HELP scroll by, as
shown in Fig. 10-6.

PROMPT {string}—This command allows you to change the actual prompt. It is
more of a fun command than a useful one. Try redefi ning the default prompt by typing
the following:

Ready>"Prompt C:\".

If successful, your CCP will look like a DOS prompt now!

C:\

 Figure 10-5 The serial terminal output on startup (after a reset).

To change it back, try “Prompt Ready>” and you should see this:

READY>

Notice that all commands are case-insensitive, the parser capitalizes all inputs.

Remote Commands Sample NTSC .PRINT {string}—This command prints a
single string (no spaces allowed) to the NTSC terminal. Try printing your name to the
NTSC terminal by typing this:

Ready>NTSC .Print Andre

Of course, replace my name with yours! If all goes well, you will see your name on
the TV connected to the NTSC terminal.

SND .PLAY {channel}, {frequency}, {duration}—The command uses the sound
driver to play a pure tone on the speaker (audio output). You control the channel (0...4),
frequency (0...5000 Hz), and duration (0...255 s). Here’s how you would start a 1 kHz tone
on channel 2 that is 5 s long:

Ready>SND .PLAY 0, 1000, 5

OVERVIEW, SETUP, AND DEMO 361

 Figure 10-6 The help menu printing out to the serial terminal.

362 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

You should hear a nice piercing 1 kHz sound coming out of the TV (or whatever you
have connected to the audio out port of the Propeller Demo Board).

KBD .KEY—This command reads the keyboard connected to the Propeller Demo
Board and echoes back the keys pressed continuously. Give it a try with the following
command:

Ready>KBD .KEY

Try hitting keys on the keyboard plugged into the Propeller Demo Board, and you
will see them on the CCP. To stop the loop, hit a key on the PC’s terminal keyboard.

TRYING NOT TO CONFUSE YOURSELF WITH THE LOCAL
AND REMOTE KEYBOARDS—OH MY!

One of the traps that is easy to fall into when using remote communications along
with multiple keyboards is to forget what is talking to what! I do this all the time,
so remember: The keyboard connected to the Propeller Demo Board is the remote
keyboard. The PC’s keyboard is connected only to the serial terminal program, and
you are typing to the CCP with it.

That completes our little demonstration of the CCP. As you can see, it’s pretty cool
and there are lots of possibilities with this technology. You can more or less create a
product right now that would allow users to throw commands via serial to a Propeller
chip and render video, audio, and more. And with a binary rather than ASCII protocol,
you could speed it up 10- to100-fold and make a rather robust system. But let’s not
get ahead of ourselves yet. It’s time now to look at the actual engineering of the whole
system and all its pieces.

System Architecture and Constructing
the Prototype
As noted earlier in the chapter, it was decided not to build a custom piece of hardware
for this project, but to use one of the Propeller Demo Boards (Rev. C). Actually, revi-
sions A and B will work as well, but Revision C and later versions are clean and have
built in USB-to-serial. Figure 10-7 shows the reference design for the Propeller Demo
Board for reference.

The software is written in such a way that it assumes the connections as shown in the
Propeller Demo Board, but you can always change these, as mentioned. In any event,
using the schematic as a reference, let’s take a look at the overall system design, as
shown in Fig. 10-8.

SYSTEM ARCHITECTURE AND CONSTRUCTING THE PROTOTYPE 363

 Figure 10-7 Propeller Demo Board Rev. D schematic. (Courtesy of Parallax Inc.)

364 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

For this project, it was decided to use NTSC, VGA, audio, serial, and PS/2 keyboard
devices. This uses up a minimum of fi ve processing cores, leaving us three cores for
other things and for future expansion. Of course, one core is used for the CCP; thus,
we are left with two ultimately for expansion. As shown in the fi gure, the NTSC signal
is on pins 12, 13, and 14; VGA is on pins 16…23; audio is on pin 10 (or 11); the PS/2
keyboard is connected to pins 26 and 27; and fi nally, the serial is on pins 30 and 31.
This is basically a standard Propeller Board Rev. C/D pin map. Table 10-1 shows the
pin map in more detail.

However, if you want to design your own system and move things around, this is no
problem; you simply have to make slight changes in each of the drivers to accommodate

 Figure 10-8 System-level modular schematic.

the pin changes. In most cases, you can simply open up the driver, and the PUB start()
method can be investigated to see what the start-up pins are and how they are passed
into the driver. The video drivers take a little more work, since you have to decide not
only which pins to use, but a couple of other settings, like upper/lower bank, broadcast,
baseband, and so on. However, inspection of the driver comments usually gives hints
on how to do this.

COMMAND CONSOLE OVERVIEW

Moving on from the hardware connections of the Propeller Demo Board itself, we see
that Fig. 10-8 shows some more modules, including the command console program
(CCP) and the serial terminal. The CCP runs on its own core on the Propeller chip and
listens to the serial line for user input. As the user types on the PC’s serial terminal, the
CCP buffers the text and acts like a single-line text editor. When the user hits <RETURN>,
the CCP tries to tokenize the input line and make sense of it. In other words, does the
input have commands in it? Are they valid? And so forth. If valid commands are found,
they are passed to the various device drivers running on the multiple cores and the com-
mands are executed. Thus, the CPP has three major components:

■ User input handing (editing, line input, echoing)
■ Parsing and tokenization of the user input
■ Execution of the requested command; messages are passed to the drivers

We will cover the CCP in more detail in the following sections.

SELECTING THE DRIVERS FOR THE VIRTUAL PERIPHERALS

The drivers for each of the media devices were selected based on functionality and popu-
larity. There are defi nitely better drivers for many of the devices—for example, more
robust graphics drivers, more advanced sound drivers, and so on. However, this project
isn’t about using the best, but more about system integration. Thus, it needs drivers that

SYSTEM ARCHITECTURE AND CONSTRUCTING THE PROTOTYPE 365

TABLE 10-1 THE I/O PIN MAP FOR THE CONNECTIONS TO MEDIA DEVICES

I/O DEVICE PROPELLER I/O PINS USED

NTSC video 12, 13, 14 (video LSB to MSB)

VGA video 16(V), 7(H), 18(B1), 19(B0), 20(G1), 21(G0),
 22(R1), 23(R0)

PS/2 keyboard 26 (data), 27 (clock)

Sound 10 (PWM at left channel of stereo headphones)

Serial coms 30 (TX), 31 (RX)

366 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

are easy to interface to and easy to control with a simple subset of commands. In the
sections that follow we will cover the exact drivers used, but the point is that they were
chosen more or less for ease of use and user base.

COMPLETE DATA FLOW FROM USER TO DRIVER

Now that you have seen all the pieces of the puzzle from a hardware and software point
of view, let’s review exactly how these pieces all fi t together. To begin with, the Propeller
is running a number of drivers on multiple cores: NTSC graphics terminal, VGA graph-
ics terminal, keyboard driver, and sound driver. Each of these drivers takes a single core.
Now, by themselves, they don’t do much. So the “glue” of the system is the CCP, which
is pure Spin code that not only issues commands to the drivers, but also is the interface
from the serial terminal running off-chip (the PC) and the Propeller chip itself.

Thus, the CCP runs on its own core, controlling the media cores, as well as handing
user input from the serial line, which at its other end has a serial terminal running in
VT100 mode, like PuTTY was used here. With the system in this known state, let’s
review exactly what happens in each phase when the system boots.

Initialization. After reset, the software simply loads each of the drivers for NTSC,
VGA, keyboard, and serial. Finally, the main PUB start() method of the CCP is
entered and the system begins listening to the serial line.

User input loop. As the user types over the serial terminal, the CCP listens to the
input. Thus, there is a little toy editor that understands character input, backspace
(editing), and the <RETURN> key, which means “process this line.”

Processing and tokenization. When the user enters a line of text, the CCP has no idea
what it means; thus, the text needs to be “processed” and tokenized into meaningful
strings of data. The processing and tokenization phase results in an array of token
strings—these might be text, numbers, or symbols—that are ready to be passed to
the command processor for inspection.

Command processing and execution. The command processor is a handler that inter-
rogates the previously tokenized input data and looks for commands in the stream. If
a command is found, it continues to process the command pattern and looks for the
parameters that should follow it. The parameters (if any) are extracted, and then the
proper “handler” is entered. The handler is where the action happens. Each handler
is connected to its respective driver and can send and receive messages from it. So
when an NTSC command is parsed, for example, the handler simply calls the NTSC
driver and passes the request for execution.

Remote Procedure Call Primer
Even if you don’t have a degree in computer science, you have probably used remote
procedure calls, or RPCs, in one form or another, or even invented them unknowingly!

The idea of a remote procedure call came about in the 1970s actually, so it’s a rather
old concept. The basic idea is simple: for one process/program to be able to call/use
a subroutine or function in another process/program. It’s more or less a form of inter-
process communication.

RPCs are a little different from DLLs or libraries since they are passive entities that
are loaded on demand. RPCs are more like making calls to another running program
and using its resources (subroutines). Thus, there is a client-server relationship here, and
you can think of the RPC call as “message passing,” as shown in Fig. 10-9. There are
various forms of the technology, and it’s more of a concept than a specifi c algorithm or
methodology. For example, in some RPC setups, the RPC call mimics the actual binary
footprint of the function call. Assuming the C/C++ programming language, here’s a
solid example:

float DotProduct(float ux, float uy, float uz, float vx, float vy, float vz);

Looking at this function, depending on the compiler directives, the parameters are
passed by value on the stack from right to left if we assume six fl oats, each four bytes,
there is a return value requiring another four-byte fl oat; thus, we need to “pack” the
parameters up into a single record and pass it along and then wait for a single fl oat
(four-byte result).

REMOTE PROCEDURE CALL PRIMER 367

 Figure 10-9 RPC call from process to process in contrast to a DLL call.

368 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

So we might do something like this to “pack” the parameters up into a contiguous
memory space:

// This is used as transport buffer for RPC calls
CHAR RPC_input_buff[256];

// Now pack the parms into the array one at a time
memcpy(RPC_input_buff+=4, @ux, sizeof(float));
memcpy(RPC_input_buff+=4, @uy, sizeof(float));
memcpy(RPC_input_buff+=4, @uz, sizeof(float));
memcpy(RPC_input_buff+=4, @vx, sizeof(float));
memcpy(RPC_input_buff+=4, @vy, sizeof(float));
memcpy(RPC_input_buff+=4, @vz, sizeof(float));

// Finally, a call would be made to the "RPC interface"
RPC_Interface("DotProduct", RPC_input_buff, RPC_output_buff);

Now that the parameters are packed into a single data structure, we simply call the
RPC interface and pass the starting address of the structure. The RPC interface in this
case takes a string as the function name and then two pointers: one to the input param-
eters and one to where the output results are stored. There is obviously an “agreement”
and a set of conventions between the caller and receiver on this function and how it
works, so the client can make RPC calls and the server can respond to them. In this case,
the server or other process reads the fi rst string, determines the RPC function, and then
calls a handler with the two pointers. It’s up to the handler to “know” how to unpack
the parameters and generate the results via calling the local function. Thus, RPC calls
necessitate a number of extra steps, including:

1 Encoding
2 Transporting to server
3 Decoding
4 Executing
5 Encoding
6 Transporting back to client

This is obviously not the fastest thing in the world; however, if the computation
workload is two times or more than all the interface steps, or if the local process or
machine can’t perform the computation, it’s worth it. Thus, RPC calls and technology
allow a process or machine to use subroutines and resources running in another process
or another processor, or on an entirely different machine.

In our case, we are going to use the concept of RPCs to make calls to another proces-
sor from the PC’s serial interface, thus it’s a machine-to-machine call.

ASCII OR BINARY ENCODED RPCs

When designing an RPC system, you can make it really complex or really simple. The
main idea is that you want to be able to call functions in another process, processor,

or machine. Decisions have to be made about the “RPC protocol” and how you are
going to do things. There are no rules for RPC calls, unless you are using a Windows,
Linux, Sun, or similar machine and want to use one of the operating system’s RPC call
application programming interfaces (APIs). When you design your own RPC protocol,
it’s up to you.

In our case, I decided that since we are going to have a human on one end making
the calls via a serial terminal, the RPC protocol should be ASCII. This, of course,
requires more bandwidth and is slower than binary. Next, since it is human-readable,
the RPC calls take a format that look more like commands rather than strings of bytes
representing data.

Thus, our models used in this project should be easy to use and remember for a human.
The next step up would be to still use ASCII-formatted data that is human-readable, but
to make it more abstract. For example, instead of having a command like this:

NTSC .Print Hello

we might encode “NTSC” as a single number and “.Print” as another number, and then
the “Hello” would stay as is:

25 0 Hello

As you can see, this version of the ASCII protocol is much smaller—we have saved
bytes already! It’s still human-readable, but not as warm and fuzzy. The entire RPC
string is 11 bytes (including NULL terminator). But can we do better? Sure, if we
encode in binary, we don’t send the longer ASCII text; we send the actual byte data.
Therefore, the binary encoding would look like this:

Byte 0, Byte 1, 'H', 'e', 'l', 'l','o'

. . . where byte 0 and 1 would represent the NTSC and Print subfunctions. In this
case, the entire RPC call costs seven bytes, but isn’t human-readable anymore since byte
0,1 are in binary and could be anything, depending on what we picked them to be. The
point is that if you were using another processor or process to make the RPC calls and
not a human at a serial terminal, then there is no reason to use ASCII coding. However,
that said, I still prefer sending things in ASCII format during the debugging phase so I
can at least look at my data strings on the other end and see what’s going on.

COMPRESSING RPC FOR MORE BANDWIDTH

The whole idea of RPC technology is to use it; thus, you might have a program running
that makes 100 local calls with 100 RPC calls every time through the main loop. You
want the RPC transport process to be quick; hence, compression of the RPC data and/or
caching is in order. For example, if you are sending large chunks of text or data that has
repeating symbols, it’s better to compress it locally, transport it, and then decompress
and execute since computers are typically thousands (if not millions) of times faster
than the communications links.

REMOTE PROCEDURE CALL PRIMER 369

370 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

In addition, advanced RPC systems might use the same data over and over; thus, there
is no need to keep sending the data to the server. A caching system should be employed
where on the fi rst RPC call, the caller indicates that a data structure being passed is static
and cacheable. Thus, the server caches it after its fi rst use. Then on subsequent calls, the
client need not send the structure until it needs refreshing. For example, say you have
a 3-D database that you want an RPC to perform calculations on. The database never
changes, so there is no need to keep sending it over and over; once it’s in the server’s
memory space, you can save the bandwidth.

OUR SIMPLIFIED RPC STRATEGY

Considering all these interesting methods, the method used for our project is human-
readable, ASCII encoded, noncompressed RPC calls. This way, you can connect a
serial terminal up to the Propeller chip on two pins and start calling the virtual periph-
erals running on the Propeller and get them to do work and return results. Therefore,
our RPC calls all look like ASCII strings starting with a command, maybe a subcom-
mand, followed by parameters and then a NULL terminator. This is the basic “unit”
of information the CCP running on the Propeller interprets as an RPC call.

Later, you might want to make a pure “binary” version of the protocol that is not
human-readable and much faster. Also, you might want a high-speed “chip-to-chip”
version based on SPI (serial peripheral interface) or I2C (inter-integrated communica-
tions). More on this idea later in the chapter.

Virtual Peripheral Driver Overview
There isn’t much to say about the drivers used on the project other than I went to the
Parallax Object Exchange Web site located here:

http://obex.parallax.com/objects

and hunted around for appropriate objects to use for this project based on my experience
with developing objects and using them. The objects aren’t the fastest, the coolest, or
the best necessarily—they just work and get the job done, and in most cases, are the
reference objects developed by Parallax initially with small changes by myself and
other authors. The idea was to have the NTSC, VGA, audio, and keyboard all running
at the same time and be able to access these devices. In the future, you might want to
use other objects or improve these for more specifi c needs.

In any event, referring to Fig. 10-10, the objects used are shown in Table 10-2.
All of the drivers and their subobjects are included in the Source directory for this

chapter, located in the /PCMProp/Chapter_10/Source/ directory.
If you look on the Parallax Object Exchange site, you should be able to fi nd all these

drivers; however, we will use the ones from my chapter and my sources since I made
slight modifi cations to each of them to make things easier.

http://obex.parallax.com/objects

NORMALIZATION OF DRIVERS FOR COMMON
RPC CALLS IN THE FUTURE

The last thing I want to discuss about the drivers is the interfaces to all of them. Since
this is a pieced-together system of other people’s drivers, each driver obviously has its
own methodology and API. For example, the NTSC calls look entirely different from the

VIRTUAL PERIPHERAL DRIVER OVERVIEW 371

TABLE 10-2 OBJECTS USED IN PROJECT

FUNCTION VERSION TOP OBJECT FILE NAME*

CCP 1.0 prop_serial_slave_010.spin

NTSC 1.1 TV_Text_Half_Height_011.spin

VGA 1.0 VGA_Text_010.spin

Audio 5.2 NS_sound_drv_052_11khz_16bit.spin

Serial 1.2 FullDuplexSerial_drv_012.spin

PS/2 Keyboard 1.0 keyboard_010.spin

∗ Many of the drivers include other subobjects.

 Figure 10-10 The virtual drivers used for the project.

372 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

keyboard calls, and so forth. Alas, if you were to develop a system from the ground up
and design drivers for NTSC, VGA, keyboard, and so on, you would be wise to design
all the APIs in a similar fashion, with conventions for function calls, inputs, and outputs
so that technologies like RPC calls and others could be implemented more easily.

WHAT IS COM?

Microsoft’s COM technology, which stands for component object model, is actu-
ally an example of normalization of data and methods. The idea here is that COM
defi nes a binary pattern for data structures and interfacing the methods; thus, any
language that follows the specifi cation can use COM objects. Moreover, COM
objects can be used remotely, just like RPC calls in a way, using a technology
called D-COM or distributed COM. So the idea of interface and data structure
normalization is a good one.

Client/Host Console Development
The CCP is the ringleader of the whole project; it ties together the user input (RCP
commands), drivers, and initialization and monitoring into a single process running on a
single core. In this section, we are going to discuss the program in brief and take a look
at some of the code. Referring to Fig. 10-11, the CCP is a Spin program that begins with
the usual Propeller declarations to initialize the Propeller chip for the target hardware.
In this case, that’s a Propeller Demo Board. The init code is shown here:

CON
 _clkmode = xtal1 + pll16x ' Enable ext clock and pll times 16
 _xinfreq = 5_000_000 ' Set frequency to 5 MHz
 _stack = 128 ' Accommodate stack

Next, there are some constants to make parsing easier that defi ne a number of ASCII
symbols; here’s an excerpt:

 CLOCKS_PER_MICROSECOND = 10 ' Used for delay function

 ' ASCII codes for ease of parser development
 ASCII_A = 65
 ASCII_B = 66
 ASCII_C = 67
 ASCII_D = 68
 ASCII_E = 69
 ASCII_F = 70
 ASCII_G = 71
 ASCII_H = 72
 ASCII_O = 79

 .
 .
 ASCII_BS = 127 ' Backspace
 ASCII_LF = $0A ' Line feed
 ASCII_CR = $0D ' Carriage return
 ASCII_ESC = $1B ' Escape
 ASCII_HEX = $24 ' $ for hex
 ASCII_BIN = $25 ' % for binary
 ASCII_LB = $5B ' [
 ASCII_SEMI = $3A ' ;
 ASCII_EQUALS = $3D ' =
 ASCII_PERIOD = $2E ' .
 ASCII_COMMA = $2C ' ,
 ASCII_SHARP = $23 ' #
 ASCII_NULL = $00 ' Null character
 ASCII_SPACE = $20 ' Space

 ' Null pointer, null character
 NULL = 0

The VAR section has very few globals. The majority of them are to support the parser
and keep state globally for the parser and tokenizer. Here is a listing of the VAR section:

CLIENT/HOST CONSOLE DEVELOPMENT 373

 Figure 10-11 The command console program at a glance.

374 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

VAR

 long cogon, cog ' Ids for cogs

 byte input_buff[80] ' Storage for input buffer
 long input_buff_index ' Index into current position
 ' of command buffer

 byte tok_buff[80] ' Storage for token buffer
 ' during processing
 byte prompt[32] ' Storage for user prompt
 long tok_buff_index ' Index into current position
 ' of tokenbuffer
 long token_ptr ' Used to point to output token
 ' from tokenizer
 long tokens[16] ' Array of pointers to parsed tokens
 ' ready for processing
 long num_tokens ' Number of tokens in token array

 long cmd_token ' A single command token

 long cmd_data_ptr ' ptr to command token
 long cmd_parse_index ' Index of command token in array

 ' General parameters used during parameter extraction
 long arg1, arg2, arg3, arg4

 ' State vars for strtok_r function, basically static
 ' Locals that we must define
 long strtok_string_ptr
 long strtok_string_index
 long strtok_string_length

Next up are the object includes for all of the drivers we need for our virtual RPC
system: NTSC, VGA, keyboard, serial, and sound:

OBJ

 serial : "FullDuplexserial_drv_012.spin" ' The full duplex
 ' serial driver

 term_ntsc : "TV_Text_Half_Height_011.spin" ' The NTSC driver

 term_vga : "VGA_Text_010.spin" ' The VGA driver

 kbd : "keyboard_010.spin" ' The PS/2 keyboard driver

 snd : "NS_sound_drv_052_11khz_16bit.spin" ' Sound driver

INITIALIZATION

The initialization process for the program consists of initializing a few variables, and
then it falls into starting up each of the drivers on their own processing cores (cogs).
As each device is started, messages are printed out to the NTSC, VGA, and serial com-
munication lines. Here is the initialization code:

Note: The “←” symbol is used to denote code that wrapped to the next line
due to book layout constraints.

 ' Initialize variables section

 ' for parser

 input_buff_index := -1

 ' Copy default prompt

 bytemove(@prompt, @ready_string, strsize (@ready_string)+1)

 ' Let the system initialize

 Delay(1_000_000)

 ' Initialize the NTSC graphics terminal

 term_ntsc.start(12,0,0,40,15)

 term_ntsc.ink(0)

 'Print a string to NTSC

 term_ntsc.newline

 term_ntsc.pstring(@ntsc_startup_string)

 ' Initialize VGA graphics terminal

 term_vga.start(%10111)

 'Print a string VGA

 term_vga.newline

 term_vga.pstring(@vga_startup_string)

 ' Initialize serial driver

 ' (only works if nothing else is on serial port)

 ' receive pin, transmit pin, baud rate

 serial.start(31, 30, %0000, 9600) baud rate

 ' Announce serial is good to go

 term_ntsc.pstring(@serial_startup_string)

 term_vga.pstring(@serial_startup_string)

 ' Start sound engine up on pin xx

 snd.start(24)

CLIENT/HOST CONSOLE DEVELOPMENT 375

376 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

 ' Announce sound is good to go
 term_ntsc.pstring(@sound_startup_string)
 term_vga.pstring(@sound_startup_string)

 ' Give everything a moment to initialize
 Delay(1_000_000)

 ' Play a little sound to let user know sound is good to go
 snd.PlaySoundFM(0, snd#SHAPE_SQUARE, snd#NOTE_C4,

�

 (Round(Float(snd#SAMPLE_RATE) * 1.0)),

�

 200, $3579_ADEF)

�

 repeat 100_000
 snd.PlaySoundFM(1, snd#SHAPE_SQUARE, snd#NOTE_C5,

�

 (Round(Float(snd#SAMPLE_RATE) * 1.0)),

�

 200, $3579_ADEF)

�

 repeat 100_000
 snd.PlaySoundFM(2, snd#SHAPE_SQUARE, snd#NOTE_C6,

�

 (Round(Float(snd#SAMPLE_RATE) * 1.0)),

�

 200, $3579_ADEF)

�

 'Start keyboard up, 2-pin driver
 kbd.start(26, 27)

 ' Announce keyboard is good to go
 term_ntsc.pstring(@keyboard_startup_string)
 term_vga.pstring(@keyboard_startup_string)

 ' Final strings
 term_ntsc.pstring(@ready_string)
 term_vga.pstring(@ready_string)

 ' Initial splash text to terminal
 serial.tx(ASCII_CR)
 serial.tx(ASCII_LF)
 serial.txstring(@system_start_string)
 serial.tx(ASCII_CR)
 serial.tx(ASCII_LF)
 serial.txstring(@prompt)

If you want to change where signals are on your particular development board,
the initialization section is the place to start. For example, the serial driver is started
on pins (31,30), which are the standard TX/RX pins for the programming of the
Propeller chip. However, you might want to add another serial port and connect
it to pins (1,2); thus, you would simply change the (31,30) to (1,2), and you’re in
business!

SERIAL COMMUNICATIONS, PARSING, AND TOKENIZATION

After initialization, the code immediately falls into the main repeat loop, which begins
with the following code:

 repeat

 ' Attempt to retrieve character from serial terminal
 ch := serial.rxcheck

 ' Character ready in receive buffer?
 if (ch <> -1)
 ' Process character, test for carriage return,
 ' or basic EDITing characters like back space

 case ch
 .
 .
 .

This code is more or less the input port to the program. The call to serial.
rxcheck checks if a character is ready in the receive buffer; if so, returns it; oth-
erwise, it returns −1. If a character is received, the case ch statement is entered,
which has three primary cases:

Case 1: Is the character a non-edit character and non-return? If so, simply insert it
into the edit buffer and echo it out on the serial terminal. This is actually the last case
in the code itself, and is part of the other case (default for you C/C++ programmers).
Here’s the code:

other:
 ' Insert character into command buffer for processing
 input_buff[++input_buff_index] := ch

 ' Echo character to terminal (terminal must be
 'in non ECHO mode, otherwise you will see input 2x!)
 serial.tx(ch)

Case 2: Is the character an “editing” character, such as <BACK_SPACE>? If so, erase the
character in the buffer and echo it out as well. This gives the user a crude edit feature;
he can at least back up a bit and retype something. Here’s the code for that:

ASCII_BS: ' Backspace edit command
 ' Insert null
 if (input_buff_index => 0)
 input_buff[input_buff_index--] := ASCII_NULL

 ' Echo character
 serial.tx(ch)

CLIENT/HOST CONSOLE DEVELOPMENT 377

378 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

Case 3: The user is done entering data into the command-line buffer and wants the
console to process it and hopefully send an RPC to the appropriate driver. This is where
all the action takes place and the tokenization of the input string into whole substrings
so that the command handlers can query the string and test for properly formatted
command strings. Here’s the code that is executed when the user hits <RETURN> at the
serial terminal:

ASCII_LF, ASCII_CR: ' Return

 ' Newline
 serial.tx(ASCII_CR)
 serial.tx(ASCII_LF)

 ' Print the buffer
 if (input_buff_index > -1)
 ' At this point we have the command buffer,
 ' so we can parse it
 ' copy it
 bytemove(@tok_buff, @input_buff, ++input_buff_index)

 ' Null terminate it
 tok_buff[input_buff_index] := 0
 tok_buff_index := input_buff_index

 ' Reset buffer
 input_buff_index := -1

 ' Tokenize input string
 num_tokens := 0

 ' Start the tokenization of the string
 ' (this function mimics the C strtok_r function more or less
 strtok_r(@tok_buff, string(","), @token_ptr)

 ' Continue tokenization process now that
 'First token has been found
 repeat while (token_ptr <> NULL)

 ' Upcase the token before insertion
 StrUpper(token_ptr)

 ' Insert token into token array
 tokens[num_tokens++] := token_ptr

 ' Get next token
 strtok_r(NULL, string(","), @token_ptr)

 ' End repeat tokenization...

The code fragment does not perform any kind of syntactic analysis whatsoever or
validation. All we are interested in is striping delimiters from the string and then break-
ing out the tokens in the string. For example, here’s a sample command line:

"sound .play 0, 100, 10"<RETURN>

The parser breaks this into an array of string pointers that looks like this:

tokens[0] �"SOUND",0
tokens[0] �".PLAY",0
tokens[0] �"0",0
tokens[0] �"100",0
tokens[0] �"10",0

. . . along with computing num_tokens and setting it to 5. Notice that the strings are
converted to uppercase and the comma and white space are removed.

THE COMMAND-LINE INTERFACE

From the user’s perspective, the command-line interface is a prompt on the serial terminal
running VT100 emulation software. This interface gives the user a powerful terminal edit-
ing and rendering capability, if we wish to support the entire VT100 command list.

VT100 TERMINALS

VT100 is a specifi cation that was developed by Dec Equipment Corp. in the 1970s
as a method of how a mainframe or mini-computer would interact with “dumb”
terminals. Figure 10-12 shows a vintage VT100 terminal. Back then, people couldn’t
afford to put complete computers on everyone’s desk, so “terminals” were in wide
use. The VT100, like many other specifi cations, is a command language that allows
the terminal to draw text on the screen, scroll, change colors, make sounds, and so
forth. These capabilities are more than enough to support user input, crude editing,
and even games! Thus, most serial terminals support the VT100 standard as we
use it. Of course, we aren’t using much of the standard. In fact, the only VT100
commands we are using are to clear the screen and home the cursor. The interesting
thing about the VT100 commands is how they are sent to the terminal. There are
a couple ways to do it, but the most commonly used method is to send the “ESCape”
character 27, followed by “[” and then the command string. Thus, most commands look
like “ESC[xx..x,” where xx are ASCII characters. For example, the clear screen com-
mand is “2J,” so to send this to the terminal, you would send “ESC[2J” to the terminal.
This string will not print, but is interpreted by the VT100 emulator and clears the screen.
If you are interested in learning more about VT100 commands, try the Wikipedia entry
here: http://en.wikipedia.org/wiki/VT100.

CLIENT/HOST CONSOLE DEVELOPMENT 379

http://en.wikipedia.org/wiki/VT100

380 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

Our console application is simple; thus, it doesn’t need or use many of the VT100 fea-
tures, but they are there if needed. The main features we need are for the user to be able to
type and edit (via BACKSPACE), and for the console application to perhaps clear the screen,
scroll, or change a color (not supported yet). Thus, the interface from the user’s perspective
is a simple prompt (similar to DOS) that the user can type commands into.

ISSUING COMMANDS TO DRIVERS

The previous two sections described how the user input is entered, parsed into tokens,
and stored into the tokens[...] array, so we have everything we need to discuss the
command handlers and their communication with the drivers. To review, the idea is
that once the tokens[...] array has the tokens in it, the handlers need to query the
strings and test for valid commands. Once found, the associated handler is entered
and the strings are extracted from the array and converted into the appropriate format
(integers, values, and so on). The next step for the handler is to call the associated
driver by sending messages to it with the parameters and execute the commands that
the user initially requested.

 Figure 10-12 A DEC VT100 terminal.

This whole process is rather interesting, so let’s take a look at a couple of examples
to see what’s going on: one example of a locally processed command and one that sends
messages to the drivers.

Local Command Processing Example Local commands are between the user
and the console program, and do not send messages to the drivers. In the CCP, there are
only three local commands so far: one clears the screen, one prints out the help menu,
and the third redefi nes the prompt (I know—how useless—but, it’s cool!). Let’s take a
look at the CLS (clear screen) command, since it’s not only a local command, but also
uses VT100 codes and is the fi rst command tested by the CCP handler loop. Here’s the
code for the CLS handler:

' Clear the terminal screen command
if (strcomp(tokens[0], string ("CLS")))
 ' Send the standard VT100 command for clearscreen
 serial.tx(ASCII_ESC)
 serial.txstring(string("[2J")) ' Clear screen
 serial.txstring(@system_start_string)
 serial.tx(ASCII_CR)
 serial.tx(ASCII_LF)

Let’s take a moment to ponder its simplicity. We know that all the user input has
been split into the tokens[...] array, so the fi rst entry should be the command itself;
therefore, the parser tries to match “CLS” in this case. Assuming it has a hit, the handler
is entered (ignores any other strings) and simply starts sending the VT100 clear-screen
command to the terminal: “ESC [2J.” That’s it! Of course, there is no error handling,
so the user could type “CLS” as well as “CLS your momma,” and both would work
since the “your” and “momma” strings would be ignored. If you like, you can add more
error handling yourself.

Let’s take a look at one more local command: the “PROMPT {string}” com-
mand. This command allows you to redefi ne the prompt to something different than
“Ready>.” This is really for fun and serves no earth-shattering purpose. Here’s the
code:

' Prompt redefinition function
elseif (strcomp(tokens[0], string ("PROMPT")))
 bytemove (@prompt, tokens[1], strsize(tokens[1]) + 1)

The parser tries to match “PROMPT” in this case statement and then enters
the handler if a match is found. Now something interesting happens next: The
handler needs more data from the tokens[...] array—in fact, the next element
in the array after the command will be the string the user wants to change the

CLIENT/HOST CONSOLE DEVELOPMENT 381

382 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

prompt to, so the code uses tokens[1] as the string pointer and updates the
global prompt string.

Remote Command Processing Example This is where things get really inter-
esting. Each remote command is tested, just as the local commands, but the dif-
ference is that instead of doing something locally to the user interface experience,
the command is processed, parameters extracted and converted to proper formats,
and then the handler(s) call down to the drivers on the other cores. Let’s start with
the “SOUND” command, since it’s one of the simplest, relatively speaking. The
parser is looking for “SOUND” to begin with. Once found, the parser needs to
fi nd one of the subcommands “.PLAY” or “.STOP” or “.STOPALL.” Each of these
subcommands might have parameters as well, so there is a lot going on, but if you
write the parsing functions cleanly in each handler, it’s a snap. Let’s take a look at
the code for this handler:

{{
Sound Commands

snd .play {chan 0..4}, {freq 0..5000}, {dur in sec 0..255} - Plays the note
on the requested channel, with sent frequency and duration.
snd .stop (channel 0..4} - Stops the requested channel.
snd .stopall - Stops all channels.
}}
elseif (strcomp(tokens[0], string ("SOUND")) or strcomp(tokens[0], string
("SND")))

 ' Case .PLAY
 if (strcomp(tokens[1], string(".PLAY")))

 ' SND [channel 0..3] [freq 0..4K] [duration 0...secs]
 ' Enter handler

 ' Channel 0..3
 arg1 := atoi2(tokens[2])

 ' Frequency to play
 arg2 := atoi2(tokens[3])

 ' Duration in seconds
 arg3 := atoi2(tokens[4])

 ' Issue command to sound core
 if (arg2 > 0)
 snd.PlaySoundFM(arg1, snd#SHAPE_SINE, arg2,
 snd#SAMPLE_RATE * arg3, 255, $3579_ADEF)
 else
 snd.StopSound(arg1)

 ' Case .STOP
 if (strcomp(tokens[1], string(".STOP")))

 ' [channel 0..3]
 ' Enter handler

 ' // Channel 0..3
 arg1 := (atoi2(tokens[2]) // 4)

 ' Issue command to sound core
 if (arg1 > 0)
 snd.StopSound(arg1)

 ' Case .STOPALL
 if (strcomp(tokens[1], string(".STOPALL")))
 repeat arg1 from 0 to 3
 snd.StopSound(arg1)

' // End if sound

There is a lot going on here, so let’s focus on one subfunction: the .PLAY code. Locate
the highlighted fragment in the previous sample that looks like this:

 ' Case .PLAY
 if (strcomp(tokens[1], string(".PLAY")))

Once the match for .PLAY has been found, we are good to go and simply need to
convert the next three values into numbers representing channel, frequency, and dura-
tion. This is where more error handling is needed. Currently, I assume the user has typed
numbers into these spots, such as:

SOUND .PLAY 0, 100, 10

. . . which would indicate to play a 100 Hz tone on channel 0 with a duration of
10 seconds. But he could have typed:

SOUND .PLAY Alpha beta zulu

This would get passed to the parser, and the custom atoi2(...) conversion func-
tions I wrote would blow up. Thus, to make this more robust, the atoi2(...) func-
tions that convert strings to integers need to test if a string is numeric. In any event,
assuming the parameters are valid, tokens[2], tokens[3], and tokens[4] are con-
verted to integers, and then we have all we need to make a call to the sound driver,
send the message, and make the RPC call. The actual call is made with the other
highlighted fragment copied here:

CLIENT/HOST CONSOLE DEVELOPMENT 383

384 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

' Issue command to sound core
if (arg2 > 0)
 snd.PlaySoundFM(arg1, snd#SHAPE_SINE, arg2,

�

 snd#SAMPLE_RATE * arg3, 255, $3579_ADEF)

�

Note: The call to snd.PlaySound(...) should be on a single line, but due to
the restraints of this book’s layout, we had to put the code on two lines. Spin does
not allow this in most places, and code must be on the same line (comments can
be on multiple lines with the { } or {{ }} syntax).

The call is made to the sound driver with the parameters, and presto—it generates the
sound! Thus, the entire process of typing into the serial terminal, user input, tokeniza-
tion, parsing, and fi nally command execution are complete!

Before moving on, let’s look at the most complex of the commands, which are the
graphics commands to the video drivers. Again, it’s more of the same: test for the com-
mand string, then test for subcommands, parse out the appropriate parameters from the
tokens[...] array, and make the calls to the driver. Here’s the code:

{{
NTSC Commands - These commands are processed and issued to NTSC terminal
core.

ntsc .pr [string] - This command prints a single string
 token to the NTSC terminal.
ntsc .cls - Clear and home the NTSC terminal.
ntsc .col [num 0..7] - Set color of NTSC terminal
ntsc .nl - Print a newline to NTSC terminal.
ntsc .out [num 0..255] - Outputs a single ASCII character to NTSC terminal.
ntsc .sx [num 0..39] - Sets X cursor position of NTSC terminal.
ntsc .sy [num 0..29] - Sets Y cursor position of NTSC terminal.
}}
elseif (strcomp(tokens[0], string ("NTSC")))

 ' Case .PR "print"
 if (strcomp(tokens[1], string(".PR")) or
 strcomp(tokens[1], string(".P")))
 term_ntsc.pstring(tokens[2])
 term_ntsc.out(ASCII_CR)

 ' Case .CLS "clear screen"
 elseif (strcomp(tokens[1], string(".CLS")))
 ' Clear screen
 term_ntsc.out($00)
 term_ntsc.newline
 term_ntsc.pstring(@prompt)
 ' Set color to normal

 term_ntsc.out($0C)
 term_ntsc.out(0)

 ' Case .OUT "output a single character"
 elseif (strcomp(tokens[1], string(".OUT")) or
 strcomp(tokens[1], string(".O")))
 term_ntsc.out(byte[tokens[2]][0])

 ' Case .NL "newline"
 elseif (strcomp(tokens[1], string(".NL")))
 term_ntsc.newline

 ' Case .COL "set color"
 elseif (strcomp(tokens[1], string(".COL")))
 ' Extract color 0..7
 arg1 := atoi2(tokens[2]) // 8
 ' Send driver set color command, [$0C, col 0..7]
 term_ntsc.out($0C)
 term_ntsc.out(arg1)

 ' Case .SX "set cursor x position"
 elseif (strcomp(tokens[1], string(".SX")))
 ' Extract x
 arg1 := atoi2(tokens[2]) // 40
 ' Send driver set x command, [$0A, x 0..39]
 term_ntsc.out($0A)
 term_ntsc.out(arg1)

 ' Case .SY "set cursor y position"
 elseif (strcomp(tokens[1], string(".SY")))
 ' Extract y
 arg1 := atoi2(tokens[2]) // 30
 ' Send driver set x command, [$0B, y 0..29]
 term_ntsc.out($0B)
 term_ntsc.out(arg1)

Look through the code carefully; if you understand this handler, you can create any
additional handlers you need. Once again, you will notice there is virtually no error
handling or value range testing. These things must be added if you need them. As an
example, let’s take a look at the “.OUT” subcommand, which is copied here and high-
lighted in the previous listing for reference:

 ' Case .OUT "output a single character"
 elseif (strcomp(tokens[1], string(".OUT")) or
 strcomp(tokens[1], string(".O")))
 term_ntsc.out(byte[tokens[2]][0])

CLIENT/HOST CONSOLE DEVELOPMENT 385

386 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

The “.OUT” command connects directly to the NTSC driver’s PUB out(c) method,
which is listed next. All we need to do is extract a character from the user input and
pass it directly to the PUB out(c) method on the driver side.

PUB out(c) | i, k

" Output a character
"
" $00 = clear screen
" $01 = home
" $08 = backspace
" $09 = tab (8 spaces per)
" $0A = set X position (X follows)
" $0B = set Y position (Y follows)
" $0C = set color (color follows)
" $0D = return
" others = printable characters

 case flag
 $00: case c
 $00: wordfill(@screen, $220, screensize)
 col := row := 0
 $01: col := row := 0
 $08: if col
 col--
 $09: repeat
 print(" ")
 while col & 7
 $0A..$0C: flag := c
 return
 $0D: newline
 other: print(c)
 $0A: col := c // cols
 $0B: row := c // rows
 $0C: color := c & 7
 flag := 0

In fact, through the PUB out(c) command, the user can set the cursor, change colors,
and clear the screen. However, since these functions are so common, I decided to bring
them out as separate commands and add to the command list. Therefore, you can actu-
ally make the user experience from a command point of view easier, since now the user
(or RPC client) doesn’t have to remember some cryptic “clear screen” code, but simply
needs to remember “.CLS.” This is converted by the handler into the appropriate driver
messages, and the results are the same.

Exploring the Command Library to the
Slave/Server
In this section, we are going to briefly look at all the commands supported by
the CCP in a reference fashion. Some simple conventions for the format of
commands:

■ Parameters are shown in braces { }.
■ All numbers are in ASCII format in human-readable format.
■ Commands and subcommands are case-insensitive.

LOCAL COMMANDS TO TERMINAL

These commands control the “terminal” itself and do not send messages to any of the
drivers.

Cls Clears the terminal screen

help Prints the help menu

prompt {string} Allows the user to redefi ne the prompt

The next set of commands is remote commands that send messages to the
cores running the virtual peripherals; thus, all the work is performed with these
commands.

NTSC COMMANDS

These commands are processed and issued to the NTSC terminal core.

ntsc .pr {string} This command prints a single string token to the NTSC
terminal

ntsc .cls Clears and homes the NTSC terminal

ntsc .col {num 0..7} Sets the color of the NTSC terminal

ntsc .nl Prints a newline to the NTSC terminal

ntsc .out {num 0..255} Outputs a single ASCII character to the NTSC
terminal

ntsc .sx {num 0..39} Sets the X cursor position of the NTSC terminal

ntsc .sy {num 0..29} Sets the Y cursor position of the NTSC terminal

EXPLORING THE COMMAND LIBRARY TO THE SLAVE/SERVER 387

388 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

VGA COMMANDS

These commands are processed and issued to the VGA terminal core.

vga .pr {string} This command prints a single string token to the VGA
terminal

vga .cls Clears and homes the VGA terminal

vga .col {num 0..7} Sets the color of the VGA terminal

vga .nl Prints a newline to the VGA terminal

vga .out {num 0..255} Outputs a single ASCII character to the VGA terminal

vga .sx {num 0..31} Sets the X cursor position of the VGA terminal

vga .sy {num 0..14} Sets the Y cursor position of the VGA terminal

SOUND COMMANDS

These commands control the sound driver core and play simple tones on up to fi ve
channels.

snd .play {channel 0..4}, Plays the note on the requested channel,
{frequency 0..5000}, with sent frequency and duration
{duration in sec 0..255}

snd .stop {channel 0..4} Stops the requested channel

snd .stopall Stops all channels

KEYBOARD COMMANDS

These commands are used to read the state of the keyboard.

kbd .reset Resets the keyboard

kbd .gotkey Tests if a key is buffered in the driver

kbd .key (Until local keypress Prints keys from the keyboard to the local
on terminal) terminal until a local terminal key is pressed

kbd .keystate {Keycode to Prints TRUE/FALSE if a special keyboard
test state 0..255} key (button) is down

If you have trouble getting any of the commands to work, simply review the code
and make sure you are entering the parameters correctly for the parser to process them
properly.

Enhancing and Adding Features
to the System
This demo project is just a starting point—there are so many ways to add to it and
improve it. For example, you can add more drivers and peripherals, like a mouse, servos,
GPS, Ethernet, and so forth. To add a new device, you would simply include it as an
object in the main program, initialize it, and then write a handler for it in the CCP. Of
course, you need to have enough cores or cogs to run the new object on since there are
only eight. However, another approach would be to have an “on-demand” system where
you could start and stop cogs with other objects as needed to manage the number of
cogs running at once. For example, say you don’t have room for both a keyboard and
mouse at the same time but you want to support them. Thus, you would make a func-
tion that when you tried to talk to the mouse, if it wasn’t running, it would terminate
the keyboard processor then start the mouse and vice versa.

ON-DEMAND DRIVERS

Another more advanced idea is on-demand drivers. In this design, you would have a
multitude of drivers on EEPROM or secondary storage, then you would pull them into
memory on-the-fl y, start them up on processors, and then the console or RPC client
would be able to send commands to them.

SPEEDING THINGS UP

We briefl y discussed the merits of human-readable ASCII text and why the decision
to go that route was used. However, we also touched upon using ASCII to encode
commands not in human-readable form and fi nally going to 100 percent binary. In the
exercises section at the end of the chapter there will be a couple challenges to take what
we have now and speed it up, but start thinking about it now. Next, we’ll talk about
more advanced chip-to-chip protocols and take the serial terminal out of the loop and
create a truly high-speed system that runs in the MHz range and is appropriate for chip-
to-chip communications.

Exploring Other Communications
Protocols
This project uses a simple RS-232 serial communications system since it’s well under-
stood, every computer has a serial port (well, they used to!), and the signaling is easy
and relatively high-speed (up to 115,200 bps). However, even with pure binary-encoded
RPC calls and 115,200 bps, that results in a throughput of RPC calls of about 360/s
based on a 32-byte RPC call serial record. This is hardly enough to do much more

EXPLORING OTHER COMMUNICATIONS PROTOCOLS 389

390 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

than print terminal text, play some sound, read keyboards, and so on. No real work can
be accomplished with standard serial. Hence, we need to take it to the next level and
explore some of the more advanced serial communications protocols that are faster than
RS-232. Two schemes come to mind immediately: SPI (serial peripheral interface) and
I2C (inter-integrated circuit). Both of these protocols are electrical and packet-based,
and support speeds in the MHz range (25 MHz roughly is common for SPI). Therefore,
with either of these protocols, we can increase our command bandwidth for RPC calls
by a factor of nearly 10- to 100-fold!

Before we talk about how we might use these protocols and rewrite the current serial
code, let’s take a few moments and review a crash course on both protocols for those
readers who aren’t familiar with the technical specifi cations of each protocol.

SPI BUS BASICS

SPI was originally developed by Motorola. It’s one of two popular modern serial stan-
dards, including I2C by Phillips. SPI—unlike I2C, which has no separate clock—is a
clocked synchronous serial protocol that supports full-duplex communication. However,
I2C only takes two wires and a ground, whereas SPI needs three wires, a ground, and
potentially chip-select lines to enable the slave devices. But SPI is much faster, so in
many cases, speed wins and the extra clock line is warranted. The advantage of I2C is
that you can potentially hook hundreds of I2C devices on the same two-bus lines since
I2C devices have addresses that they respond to. The SPI bus protocol, on the other
hand, requires that every SPI slave has its own chip-select line.

Figure 10-13 shows a simple diagram between a master (left) and a slave (right) SPI
device and the signals between them, which are:

SCLK Serial Clock (output from master)

MOSI/SIMO Master Output, Slave Input (output from master)

MISO/SOMI Master Input, Slave Output (output from slave)

SS Slave Select (active low; output from master)

SPI is fast, since not only is it clocked, but it’s also a simultaneous full-duplex proto-
col, which means that as you clock data out of the master into the slave, data is clocked
from the slave into the master. This is facilitated by a transmit-and-receive bit buffer
that constantly recirculates, as shown in Fig. 10-14.

 Figure 10-13 The SPI electrical interface.

The use of the circular buffers means that you can send and receive a byte in only
eight clocks rather than clocking out eight bits to send and then clocking in eight bits to
receive. Of course, in some cases, the data clocked out or in is “dummy” data, meaning
when you write data and are not expecting a result, the data you clock in is garbage and
you can throw it away. Likewise, when you do an SPI read, typically, you would put a
$00 or $FF in the transmit buffer as dummy data since something has to be sent and it
might as well be predictable.

Sending bytes with SPI is similar to the serial RS-232 protocol: You place a bit of
information on the transmit line, then strobe the clock line (of course, RS-232 has no
clock). As you do this, you also need to read the receive line since data is being trans-
mitted in both directions. This is simple enough, but the SPI protocol has some specifi c
details regarding when signals should be read and written—that is, on the rising or fall-
ing edge of the clock, as well as the polarity of the clock signal. This way, there is no
confusion about edge, level, or phase of the signals. These various modes of operation
are logically called the SPI mode, and are listed in Table 10-3.

Mode Descriptions
■ Mode 0—The clock is active when HIGH. Data is read on the rising edge of the clock

and is written on the falling edge of the clock (default mode for most SPI applications).

 Figure 10-14 SPI circular buffers.

TABLE 10-3 SPI CLOCKING MODES

 CPOL CPHA
MODE # (CLOCK POLARITY) (CLOCK PHASE)

0 0 0

1 0 1

2 1 0

3 1 1

EXPLORING OTHER COMMUNICATIONS PROTOCOLS 391

392 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

■ Mode 1—The clock is active when HIGH. Data is read on the falling edge of the
clock and is written on the rising edge of the clock.

■ Mode 2—The clock is active when LOW. Data is read on the rising edge of the clock
and is written on the falling edge of the clock.

■ Mode 3—The clock is active when LOW. Data is read on the falling edge of the
clock and is written on the rising edge of the clock.

Note: Most SPI slaves default to Mode 0, so typically, this mode is what is used
to initiate communications with an SPI device.

That about sums it up for SPI. Of course, the Propeller chip does not have any SPI
hardware built into it; thus, if we want to talk to the Propeller chip with an SPI interface,
we have to write a virtual SPI interface—just like the serial driver itself. Therefore, we
have to “bit-bang” the SPI interface. Assuming we want to get each bit of information
into the Propeller chip, plus a little overhead, maybe fi ve instructions per bit—that
means that a 20 MIP (core is going to be able to keep up with a 4 MHz SPI interface,
so something to keep in mind). It’s still better than the 115,200 serial connection! For
more information about SPI interfacing and protocols, take a look at some of the docu-
ments located on the FTP site in the Chapter_10/Docs/spi/ directory.

I2C BUS BASICS

The I2C bus is a little more complex than the SPI bus interface and protocol. The reason
is that the I2C bus uses only two signal lines (SDA–data, SCL–clock); thus, more proto-
cols and conventions must be followed to avoid bus contention and other issues. Second,
I2C supports up to 128 devices simultaneously connected to the bus. This feature makes
I2C superior for “daisy chaining” devices together, as well as cheaper. Of course, you
never get something for nothing, and the I2C bus is not without its shortcomings. First,
it is nowhere near as fast as SPI. SPI can operate at 25 MHz and even up to 50 MHz.
I2C, on the other hand, averages around 100 kHz+, with 400 kHz being fast, and with
many new devices supporting 1 to 2 MHz. Thus, SPI is at least 25 times faster. But that’s
not the whole story. The added overhead that the I2C protocol attaches to communica-
tion (addressing, commands, and so on) slow down the protocol even more. Thus, I2C
devices tend to fi nd their way into “slower” peripherals where speed isn’t an issue but
addressing many devices is. For example, with serial memories and sensors, where the
device itself is slow, the 100 to 400 kHz average speed of I2C is more than enough for
our application. However, you will see SPI devices in very high-speed applications,
such as video and audio.

Figure 10-15 shows an architectural diagram of how the I2C bus is laid out in relation
to the master device and to the slaves on the line.

Electrically, the I2C bus consists of any number of masters and slaves on the same
bus. Masters initiate communication, while slaves listen and respond. Masters can
transmit and receive from a slave, but a slave cannot initiate communications. In addi-
tion, to enforce that masters are in charge, the clock line SCL can only be controlled
by a master, furthermore placing the slave(s) into a passive role. Multiple devices can

be connected to the same two-signal bus from an electrical point of view, so both SDA
and SCL are open-drain; thus, “pull-up” resistors must be connected from SDA and
SCL to Vcc via a 5 to 10 K resistor on both lines. Note that with the SPI bus, all SPI
devices share the MISO (master input), MOSI (master output), and SCLK (serial clock)
lines; however, the CS, or chip-select, lines for each device control the selection of the
target device (not an address, as with I2C). When a device is selected, its bus is active,
while any other deselected devices go tristate. Thus, the I2C bus is always active and
arbitration is achieved through an open-drain design, where SDA and SCL can only be
pulled down by the master and SDA alone by the slave.

The addressing of devices is achieved by a seven-bit address sent down the I2C bus
to all slave devices; only the listening device with the matching address responds, and
then communication begins. The protocol is rather complex and beyond the scope
of this chapter, but some good references are located on the FTP site in Chapter_10/
Docs/i2c/ directory.

SPI/I2C AND LOW-LEVEL CHIP INTERFACING

Now that we have discussed some of the technical details of SPI and I2C, let’s take a
moment and talk about how we might design or alter our current system to take advan-
tage of the technology. First, our current system uses a serial terminal (controlled by a
primate) to send and receive commands and data to and from the Propeller chip, which
is running the CCP and the virtual peripherals. Thus, we need to remove the serial
terminal and human out of the loop, and create a tighter low-level interface based on
either SPI or I2C. Let’s assume SPI for now.

As Fig. 10-16 shows, this is what we need to implement. The CCP essentially works
the same, but now, instead of an RS-232 communications driver, we need to write or
obtain an SPI driver. Then, as the SPI driver receives bytes, we need to monitor it for
commands, execute them, and return results. This is all going to happen 100 times
faster than the serial interface; thus, assembly language might need to be employed to

 Figure 10-15 I2C bus layout.

EXPLORING OTHER COMMUNICATIONS PROTOCOLS 393

394 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

get maximum performance. However, with this setup, now the command packets (RPC
calls) would be encoded as command bytes followed by data bytes, so the interface
would be nonhuman-readable, but much faster.

Now the Propeller chip truly acts like a virtual peripheral, and as long as the host/
client chip/system has an SPI interface, we can send commands to the Propeller!
In other words, we turn the Propeller into a “black box” that can be controlled with
an SPI interface that has a rich set of multimedia capabilities. For example, you
could hook a BASIC Stamp up to the SPI interface or another processor and then
leverage the power of the Propeller chip over a single SPI interface with a simple
set of commands.

USING TCP/IP TO SERIAL FOR FUN

The last topic I want to discuss is more for fun than for anything else, but it’s kind of
a cool hack. Currently, we are using a PC and a serial terminal program to talk to the
Propeller chip, but the serial terminal is running locally on the machine, so at best, we
can put a 10- to 20-ft cable out there and connect it to the Propeller Demo Board. But
what if we wanted to truly be remote? Well, we could create a real Ethernet connection
and connect an Ethernet module to the Propeller Demo Board, but that would require a
lot of work and time. However there is a cool trick though, that we can play with TCP/IP
and Ethernet—the trick is to load a “serial over TCP/IP” connection on two computers,

 Figure 10-16 Chip-to-chip interfacing.

and then we can create a virtual serial connection over the Internet to connect our serial
port to. Figure 10-17 shows this setup.

The idea is that we run a program on the PC that is connected directly to the Propeller’s
serial port. Then we run another program on a remote PC—these programs link up and
then “tunnel” the serial port through TCP/IP transparently, so the COM port on the
remote PC seems as if it were local on the remote machine! Presto—we can send com-
mands to our little project over the Internet!

A number of programs can do this. Go to www.download.com and search for “serial
over internet, serial over TCP/IP, serial port redirector” and see what comes up. One
of my favorites is called the “Eltima Software Serial to Ethernet Connector,” located at
www.eltima.com/products/serial-over-ethernet.

It allows you to set up a “server” on one machine that serves out the serial port and
then a client on another machine that accesses the serial port over TCP/IP. Remember,
turn off your fi rewall, or make sure to poke a hole in the port(s) you use for the con-
nection. Figure 10-18 is a screenshot of the program’s graphical user interface (GUI);
it’s rather slick.

 Figure 10-17 Serial over TCP/IP connection.

EXPLORING OTHER COMMUNICATIONS PROTOCOLS 395

www.download.com
www.eltima.com/products/serial-over-ethernet

396 USING THE PROPELLER AS A VIRTUAL PERIPHERAL FOR MEDIA APPLICATIONS

Summary
At this point, hopefully, you see the true power of networking Propeller chips and
using them as slaves from a client/host computer. Not only can simple serial proto-
cols like RS-232 be used, but lower-level chip-to-chip protocols, such as SPI, I2C,
and CAN (control area network), can be employed to truly transform the Propeller
chip into a virtual peripheral, where the user need not know what’s inside it since
the behavior is exposed via the interface. Moreover, with the platform developed
here and the ideas therein, you can easily see how on-demand virtual peripher-
als and real-time changes to the cores can be achieved, creating a limitless set of
possibilities for the client/host controller to command the Propeller chip and its
multicore architecture.

Exercises
1 Add mouse support to the CPP and commands so that you can stream the state of

the mouse (x, y, buttons) until a key is pressed on the local serial terminal.

 Figure 10-18 A screenshot of the Eltima program in server mode.

2 Try writing a Visual BASIC, C/C++, Perl, PHP, or other program that opens a serial
port up and then controls the CCP by throwing commands at it by building up the
command strings programmatically.

3 Convert the CPP to work with an SPI interface. Then connect another Propeller chip
and see if you can slave one Propeller from the other.

4 Create a “clock” counter on the Propeller and add a command in the CCP to read it
out.

5 Try increasing the serial baud rate and see how fast you can get and maintain reliable
communications.

6 Add another USB2SER port to the project, and run the serial terminal through this
serial port while using the built-in serial port on the Propeller Demo Board only for
programming and downloading code.

7 Add error handling to all the commands in the CCP so the correct number of param-
eters, types, and values are checked.

8 Using the NTSC commands, see if you can write a Pong-style game by drawing
and removing characters from the screen. Control it from Visual BASIC, C/C++,
Perl, PHP, or some other language running on the PC with an open serial port to the
CPP.

EXERCISES 397

This page intentionally left blank

399

11
THE HVAC GREEN HOUSE MODEL

Vern Graner

Introduction
In this chapter, we will explore a Propeller-powered HVAC (heating, ventilation, air
conditioning) energy-saving “green” house model. This experimental platform takes
advantage of the Propeller chip’s low cost and high versatility, allowing us to experi-
ment with intelligently managing a scale model of a typical residential central heating
and cooling system.

Through a combination of low-cost components and some powerful software objects,
we can easily explore different methods to boost HVAC system effi ciency, reduce oper-
ating costs, and ultimately make the environment more comfortable for the building’s
inhabitants. During our exploration, we will be covering the following topics:

■ Examining the makeup and drawbacks of central air HVAC systems
■ Creating the HVAC green house model
■ Designing the control electronics: Scalability and real-world considerations
■ Software creation considerations: What gets processed where?
■ Modular programming using Propeller objects
■ Electronics design and implementation

We’ll start out by getting familiar with some inherent problems in a typical residential
HVAC system and see how using the Propeller as a system management tool can be
educational, interesting and fun!

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_11.

400 THE HVAC GREEN HOUSE MODEL

Exploring the Problem
On April 23, 1886, an inventor named Albert Butz patented a furnace regulator he
called the “damper fl apper.” When a room cooled below a predetermined tempera-
ture, a switch energized a motor to open a furnace’s air damper so the fi re would
burn hotter. When the temperature rose above the preset level, the switch automati-
cally signaled the motor to close the fl apper, damping the fi re so it burned cooler.
This simple yet ingenious thermostat was the seed that eventually grew into a little
company named “Honeywell.”

Information: To learn more about Albert Butz and Honeywell, read the article
referenced here at www51.honeywell.com/honeywell/about-us/our-history.html.

Though the “damper fl apper”-inspired thermostat design is now more than 100 years
old, the typical residential central air system controllers of today rely on essentially the
same principles. Though the modern thermostat may contain a microprocessor, a real-
time clock, timers, and factory-calibrated solid-state temperature sensors, the primary
operating mode remains the same; when the air temperature nears a preset point, the
thermostat simply turns an HVAC system off or on. Though this method of temperature
management is widely used, it has observable issues regarding comfort and effi ciency.

One problem with the “binary” nature of a thermostat is that the optimal temperature
point is “chased,” following a predictable sinusoidal path as it oscillates between “too
cold” and “too hot.” The reason for this cannot entirely be laid at the feet of the ther-
mostat module itself, but instead may be attributed in part to the design of the heating
and cooling portions of a typical central-air system. These systems are usually tuned
to produce a specifi c amount of heated or cooled air (usually in cfm, or cubic feet per
minute) when activated.

This precludes providing a proportional response to temperature needs, as fan speeds
and heating/cooling element temperatures are typically set at a fi xed value (though
some newer HVAC fans do offer high-/low-speed options in a rudimentary attempt to
provide some proportionality). As long as the thermostat is calling for heat or cool,
most HVAC systems will blindly produce the hottest or coldest air that they can until
the thermostat tells them to stop. To make matters worse, it is rare that a residential
HVAC system has more than one thermostat, so a single sample is used to provide the
standard for the entire building.

Without a way to monitor the temperature in each room, managing the distribution
of conditioned air so that all rooms attain the same temperature requires someone to
manually visit one room at a time, measure the room temperature, and then adjust the
air register in that room in an attempt to “balance” it with the others.

TRYING TO STRIKE THAT BALANCE

This “balancing” process would seem to be relatively simple to perform and not require
much maintenance after it has been completed. However, there is more to this process

www51.honeywell.com/honeywell/about-us/our-history.html

EXPLORING THE PROBLEM 401

than you might imagine. When balancing airfl ow in a building, you enter the fi rst room
and either increase the opening of the air register to allow more airfl ow or decrease it
to create the opposite effect. As pointed out earlier, in most central air systems, you
have a set amount (in cubic feet per minute) of conditioned air being created. So when
you reduce the amount of air allowed into one room, air is then diverted to the other
rooms in the building.

This causes unwanted (and usually unpredictable) changes in temperature elsewhere
in the building. The inverse is true as well: When you open a register more fully, you
may “steal” air from rooms that were otherwise already comfortable. Determining the
amount that an adjustment in one room may affect other rooms is further complicated
by factors including air duct size, the distance from the air production source, and the
size of the return air path for the rooms.

 If this room-to-room “balancing” process is completed by a competent HVAC
professional, this complex interrelationship between air register settings can result in
reasonably consistent air temperature between all rooms. However, the adjustments
are based on the readings taken at a specifi c point of time and assume that the entire
system of rooms is static. Unfortunately, in real-world HVAC environments, this is
just not the case.

The reality is that a room’s heating and cooling needs will change over time as many
variables come into play. For example, sunlight shining on an exterior wall, through
a window, or on the roof will likely increase the room temperature. The contents of a
room can also have a considerable impact on the room temperature. Consumer elec-
tronic equipment such as stereo systems, televisions, and computers all create heat
when operating. Other typical household devices, such as clothes dryers, refrigerators,
stoves, and coffee makers, all release heat as well. Even if a room is relatively devoid of
heat-producing equipment, it is extremely likely to have some type of lighting system,
with low-voltage halogen lights and incandescent light bulbs that generate lots of heat
as a by-product of creating light.

Of course, we can’t overlook the inhabitants themselves. Humans give off a surprising
amount of heat. It’s generally accepted that a typical adult human being gives off about
the same amount of heat as a 100-watt incandescent light bulb! Then, just when you
thought it couldn’t get more complex, think of what happens to room temperatures when
you open doors between rooms or, worse yet, open exterior doors and windows!

With so many different variables affecting room temperature at any given time, the
idea of attaining consistent, balanced temperatures among all the rooms in a build-
ing by the application of a one-time “balancing” of individual registers seems rather
unlikely. Even if you could manage to get all the rooms to reach a specifi c temperature,
the ultimate arbiter of temperature is not the thermostat or even a thermometer. It’s the
inhabitants of a given room that decide if the temperature is “right” or would need to
be altered to make them more comfortable.

Personal perceptions of “warm” and “cold” vary widely, and it is rare that all of a
building’s inhabitants will be comfortable at the same room temperature. For example,
a sedentary person may be comfortable in a room at 76 degrees, but an active person
may feel the room is too warm. Even a sedentary person, when placed in a room with
lots of electronic equipment, may require more cooling in order to be comfortable.

402 THE HVAC GREEN HOUSE MODEL

The sad reality is that, in most cases, a single thermostat in a multiple-room building
just isn’t up to the task of creating a balanced, comfortable temperature for everyone. If
the thermostat in the building decides to make it cooler or warmer based on its single
sample and that causes some rooms to be too hot or cold, that’s just too bad. In some
situations, it’s the “worst case” room that controls the temperature for the whole build-
ing. A good example would be cranking up the AC to deal with one hot room in the
house and wasting lots of energy “freezing out” other rooms.

So given such an extremely variable and dynamic environment to deal with, is it
possible to design an upgrade to a standard HVAC system by adding some technology
“smarts” to deal with all these situations? To fi nd out, we built a scale-model HVAC
green house on which we could experiment.

The HVAC Green House Model
Two main considerations were taken into account when building the model house for
this project. First, of course, we wanted to have a test bed to experiment with mechani-
cal, electrical, and software designs to deal with the HVAC problems outlined previ-
ously. Second, we hoped to end up with an attractive and educational display piece we
could use to showcase the concept of a dynamically managed HVAC system. We wanted
to visually demonstrate that a small amount of technology could make a large difference
in energy effi ciency as well as the comfort level of the building inhabitants.

CHOOSING THE STRUCTURAL/MECHANICAL ELEMENTS

A number of smaller decisions needed to be made before the construction of the model
house began. For example, we wanted all the electronic and mechanical devices to be vis-
ible, so using quarter-inch-thick clear plastic panels for the walls, ducts, and structural com-
ponents was a must. In Fig. 11-1, you can see the preliminary sketch with clear panels.

The trade-off was that this type of material doesn’t do a very good job of insulating
the rooms from ambient temperatures external to the model or from adjacent rooms.
To compensate for this, we did away with windows and doors in the rooms to make
each one a “sealed” environment. Each room would only receive air from a single air
register and would exhaust air through a single return air vent. We also “oversized”
some components, in effect using “brute force” to overcome heat loss/gain from the
construction materials. For example, at our scale size of approximately “1 in = 1 ft,”
the air registers in each room are nearly 1-1/2 ft wide by 1 ft tall, and the air circulation
fan would be a whopping 5 ft tall!

The HVAC Itself The next consideration for this test system was exactly how we
were going to cool or heat the air. We searched in vain for an actual Freon-based HVAC
system with an associated external evaporator/condenser small enough to fi t in our
“dollhouse” scale building, but were unable to discover any inexpensive units this small.
Luckily, we were able to fi nd a small-scale solid-state heat pump that used a Peltier

THE HVAC GREEN HOUSE MODEL 403

 Figure 11-1 Preliminary Google sketch of HVAC green house.

device. Typically used in portable electric “iceless” coolers for RVs and cars, Peltier
devices can act as both a cooling and heating device.

The Peltier device we used (Fig. 11-2) consisted of a 40-mm-square thermoelectric
heat pump. The device conveniently operates on 12 volts DC and draws 5 A of current.
On our test power supply running at approximately 12.3 V, we measured the hot side at
183.6°F and the cold side at 56.2°F. In order to reverse the hot and cold sides, all you
need to do is reverse polarity of the applied 12 volts DC.

The Cooling Tower We mounted the Peltier device in a clear polycarbonate “cooling
tower” with 12 V high-speed fans on both the external “waste” heat sink and the internal
“supply” heat sink that would serve to heat or cool the inside of our model house. This
cooling tower (Fig. 11-3) was made as a separate enclosure, allowing us to remove it
from the model for maintenance or cleaning and also for access to the send and return
air ducts and the center wiring channel (aka “wire chase”).

The Air Registers As we now had the capability to cool and warm air, we needed
a way to remotely adjust the amount of air delivered to each room. This was a key
concept in allowing us to experiment with balancing how much air was delivered to a
given room. Though commercially available air registers used in residential construc-
tion consist of a series of adjustable louvers, we decided that a simple sliding panel
would allow us to adjust the size of the entry port to the room while also making it
clear to an observer exactly how much of the air vent was occluded. We fabricated
brackets and used servo motors with linkages to adjust the sliding port cover as shown
in Fig. 11-4.

404 THE HVAC GREEN HOUSE MODEL

 Figure 11-2 12-volt “Peltier” solid-state thermoelectric heat
pump.

 Figure 11-3 Clear polycarbonate “cooling tower” with external and
internal blower fans mounted.

The Air Bypass System One of the last things to be implemented was an air bypass
system (Fig. 11-5) that would allow us to either recirculate the existing air in the house
for normal operation or draw air from outside the house, pass it through all rooms, and
then exhaust it out the opposite end of the house for “fresh air” mode of operation.

The idea behind this feature was twofold: First, in the event that the external ambi-
ent air temperature was suffi cient to cool or heat the inside of the house, engaging this

THE HVAC GREEN HOUSE MODEL 405

 Figure 11-4 Servo-controlled air register prototype.

 Figure 11-5 Photo of cooling tower servo-controlled “bypass”
doors.

406 THE HVAC GREEN HOUSE MODEL

bypass and activating only the blower fan would allow the house temperature to be
brought to a comfortable level without expending energy operating the heat pump. This
part was a key piece of making our HVAC system more “green.”

Second, in the event that the air inside the house was found to be unhealthy or danger-
ous (i.e., a natural gas leak or a buildup of carbon monoxide), the system could react
by sounding an alarm, moving the bypass doors into “fresh air” position, moving every
room air register to 100 percent open, and activating the blower fan, thereby purging
unhealthy air from the entire house.

To implement this bypass system, two servo-controlled doors were added to the
cooling tower that, when open, allow air to recirculate normally through the system
(see Fig. 11-6).

When closed, they block the return-air plenum path to the fan while opening side
vents in the cooling tower. These side vents allow external air to be drawn in to the fan
from outside the cooling tower (a source outside the house), pushed through all the
rooms in the house, and then exhausted via a vent fl ap at the opposite end of the house
as shown in Fig. 11-7.

If you look closely at the CAD drawings of the house, you may notice that when
the bypass doors are placed in the “fresh air” mode (i.e., the return air duct pathway is
blocked), the air delivered to each of the rooms has no place to exit. To deal with this,

Circulation fan

Send air

Exhaust vent
closed

Return air
Fresh air

door closed

Cooling
device

 Figure 11-6 CAD “cutaway” drawing of cooling tower bypass doors in “recirculate”
mode.

a servo-controlled exhaust vent “fl ap” (Fig. 11-8) was added to the end of the return
air duct. When this fl ap is opened, the air exiting each room is vented out the opposite
side of the house from the fresh air intakes on the cooling tower.

Besides being used for emergency house ventilation or for cooling/heating the house
with external air, the cooling tower bypass could also be activated manually, creating
a healthier atmosphere by bringing more fresh air into the house or even as a way to
reduce odors from cooking or smoking.

THE HVAC GREEN HOUSE MODEL 407

Cooling device

Fresh
air

Return air

Exhaust

Send air

Exhaust vent open
Circulation fan

 Figure 11-7 CAD “cutaway” drawing of cooling tower bypass doors in “fresh air” mode.

 Figure 11-8 Servo-controlled exhaust vent fl ap at the end of the
return air duct (in closed position).

408 THE HVAC GREEN HOUSE MODEL

The Final Layout In the fi nal design, we settled on fi ve rooms, each one a different
size to simulate different-sized rooms in a typical house as shown in Fig. 11-9.

 A servo-controlled air register was created for each room and mounted in a central
plenum that spanned the house from the cooling tower in front all the way to the back
of the building. Beneath the “send” air plenum, we created a wire chase to allow us to
run wire from each room back to a master control area.

The Hinged Roof Panels In addition to being able to control the amount of
air delivered to each room, we needed a way to set a target temperature per room.
We created hinged roof panels for each room and mounted pushbuttons that would
allow an observer to alter the target temperature up or down simply by pressing one
of the buttons. Above the buttons we added 2 × 16 LCD panels that would display
both the current temperature and the target temperature to the observer as shown
in Fig. 11-10.

Once all these mechanical components were mounted, it was time to design the
electrical systems that would bring this creation to life.

Cooling device

Circulation fan Air return

Heat load
simulator

Servo controlled vent

8"

24"

 Figure 11-9 CAD drawing of fi nal design confi guration.

DESIGNING THE CONTROL ELECTRONICS: SCALABILITY AND
REAL-WORLD CONSIDERATIONS

Though we are working with a model system, we don’t want to preclude the possibil-
ity that this design may be implemented on a large scale, possibly even being used in
an actual residential HVAC system. Since the Propeller chip has the ability to control
multiple servos and to read multiple sensors, we sketched one of the fi rst designs using
a single Propeller to operate the entire system. This would require a “star” wiring
design where each room would have a separate line running all the way back to a
central wiring closet.

When planning an installation of technology such as this in a new home, or retrofi t-
ting an existing home for something similar, wiring requirements are a substantial issue,
and the downside to a “star” design is the cost. There is both the cost of the wire itself
and of the associated labor to run all the lines. Though the “star” wiring scheme was
inherently expensive, it wasn’t a deal killer in and of itself.

However, the second strike against this design had to do with the length of the
cable runs from each room back to the wiring closet. Typically, the distance between a
Propeller chip and devices such as the 5 V transistor-transistor logic (TTL)-level serial
LCD unit or pulse width modulation (PWM)-controlled servo motors would be on
the order of a few inches to maybe a couple of feet. At real-world distances of 50 ft or

THE HVAC GREEN HOUSE MODEL 409

 Figure 11-10 Hinged top panels with RED/BLUE temperature control
buttons and LCD displays.

410 THE HVAC GREEN HOUSE MODEL

more, there was a very good chance these devices would become unstable or completely
fail to operate due to voltage loss over distance and/or wire capacitance “rounding” the
edges of the square wave signals.

The fi nal nail in the coffi n for this design was that a single Propeller chip simply
did not have suffi cient pins to support many rooms, even when using low pin-count
“intelligent” devices. For example, if each room had a 2 × 16 serial LCD display, a
servo motor, two pushbutton switches, a temperature sensor, and two indicator lights,
the minimum pin count per room would be as follows:

1 5 V+ power
2 GND
3 Serial LCD signal
4 Servo motor control
5 Button 1-to-gnd
6 Button 2-to-gnd
7 “1-wire” temperature sensor
8 LED1
9 LED2

As the Propeller chip typically has 28 available pins, this design would only allow
three rooms to be monitored before all the pins on the chip had been allocated! The
one-Propeller design also called for more expensive components, such as serially con-
trolled LCD displays and 1-wire temperature sensors, as well as additional expenses in
cabling because readily available four-pair CAT-5 cable doesn’t contain enough wires.
So, for implementation, either two CAT-5 cable runs would need to be run from each
room back to the wiring closet or special-order wire containing at least nine leads would
need to be purchased.

If One Propeller Is Good… As the single-Propeller design was clearly not feasible,
we started to look for other design ideas. The next logical step was to see if we could
place the sensors and controls closer to the processor. We started looking at placing one
Propeller in each room, as this idea solved multiple problems and provided additional
benefi ts. First, the wiring issue would become much less complex, as we need only
supply power, ground, and TX/RX lines for digital communication. Second, we would
be able to reduce costs by moving away from the more expensive “intelligent” periph-
erals and substituting a standard “parallel” LCD display for the serially controlled unit
and replacing the 1-wire temperature sensor with an inexpensive DS-1620 chip.

Having the Propeller in the room placed it in close proximity to the RC servo motor,
eliminating worries of signal degradation affecting performance. Also, driving the LCD
from the Propeller eliminated concerns of long wire runs corrupting serial TTL signals
to the LCD. As we mentioned earlier, because the Propeller has 28 available pins, we
have the option of adding items such as the inexpensive HS-1101 humidity sensor, more
indicator LEDs, and even a speaker for acoustic feedback and/or alarms.

The “one Propeller per room” design also lent itself to using a network protocol and
having multiple units share a single cable. This eliminated the need for “star”-type

wiring, allowing all the units to be “daisy chained” on a single cable from room to
room. This reduces wiring cost in new construction and greatly simplifi es installation
in existing buildings. So, using our “one Propeller per room design,” our new cable pair
consumption would simply be:

Pair 1: +5 V/GND

Pair 2: TX/RX

This new reduced wiring consumption also means less expensive two-pair wire (i.e.,
telephone cable) could be used to connect the rooms to the wiring closet. In our proto-
type, we decided to use four-pair CAT-5 cable to support the possible current draw that
we may see from the servo motors. In addition, we decided to put +12 V on one pair to
drive 12 V indicator lights in each pushbutton switch.

Developing Control Board Prototypes At this point, we decided to build a test
“room control” board (Fig. 11-11) to see how well it would function. The fi rst one was

THE HVAC GREEN HOUSE MODEL 411

 Figure 11-11 The fi rst prototype “room control” board with
LCD display, temperature sensor, humidity sensor, servo driver,
and pushbutton switches.

412 THE HVAC GREEN HOUSE MODEL

built using the low-cost Parallax Propeller Proto Board USB, and some rudimentary
code was written to display current temperature and humidity, the “target” temperature
for the room, and the position of the servo motor that would control the register.

Based on the success of the fi rst board, a second board (Fig. 11-12) was carefully
constructed by hand based on the layout of the fi rst prototype.

As we expected these boards to communicate via CAT-5 cable, we needed to add
RJ-45 jacks. The only PC-board-mount RJ-45–style connectors we could fi nd did not
have .100" pin spacing, making them rather diffi cult to install on the Proto Boards. Hand
routing wires also led to a couple of mistakes, resulting in time being spent trouble-
shooting the second Proto Board. At this point, it was becoming clear that building each
board by hand was going to be more time-consuming than we originally thought and
more error-prone than we would like, especially considering how many boards would
need to be built.

There would be fi ve rooms in the model house requiring a room control board, and
we wanted to have at least one board prebuilt and programmed as a spare to make it easy
to repair the model if there were failures. In addition, we wanted to have some boards to
use for testing and programming without having to be in possession of the entire model
(which, at 3 ft × 4 ft in size, was decidedly nontrivial to move!). We hit upon the idea of
creating “daughterboards” that would attach to the Propeller USB Proto Boards via female
pins soldered around the surface-mounted Propeller chip, as shown in Fig. 11-13.

 Figure 11-12 The second prototype “room control” board.

We then laid out a schematic for the room control board (Fig. 11-14) where all
the components would be populated on the daughterboard and would connect to the
underlying Propeller Proto Board through standard .100" spaced pins. Not only would
this design allow us to create multiple room boards, it would also allow us to use the
PC-board-mount RJ-45 jacks. This design had the added benefi t of being “repairable.”
In the event of a failure of the surface-mount Propeller chip, we could simply “swap”
the Propeller Proto Board with a new one, as none of the room board components were
soldered to the Propeller Proto Board.

Using the daughterboard design had enough advantages that we wanted to forge
ahead. However, we didn’t want the associated “lag time” and expense of having a
commercial board house etch the boards for us, so we went ahead and auto-routed the
schematic to create a printed circuit board but we then converted to a “trace isolation”
style board (Fig. 11-15) so it could be cut and drilled using the three-axis CNC system
available in-house.

A Three-Board Solution As this method of creating boards worked rather well, we
decided to use the same process to create daughterboards for the additional functions
that would be required. For example, each room board would need to be able to send
data back to a “master board.” The master board collects room temperatures and cal-
culates servo positions to control the air registers in each room. A new schematic was
created for the master board, and it was then cut on the CNC system using the same
board size and pin footprint as the “room board.”

THE HVAC GREEN HOUSE MODEL 413

 Figure 11-13 Female .100" headers soldered onto the Propeller USB
Proto Board.

 Figure 11-14 Preliminary schematic of the “room board” daughterboard.

4
1

4

At fi rst, this master board had both an NTSC output to be used for a GUI and the
components to control the blower fans and heat pump. After thinking about “real-world”
requirements, we decided that it would be more realistic to have the “control” compo-
nents located outside the house or in the attic near the HVAC equipment. Subsequently,
we decided that a third board would need to be created that would host all the high-
amperage control components that would operate the heat pump and the blower fans.
This board would also host a sensor that would read the outdoor ambient temperature
and humidity to be used for determining if the outside air were suitable to use for indoor
heating or cooling. As this board would be nearer the blower fans (in the cooling tower),
we placed headers for servo motors to control the cooling tower bypass doors, as well
as the return-air bypass vent fl ap. With its feature set complete, we dubbed this new
board the “control board.”

Another round of autorouting, and CNC cutting/drilling now left us with three board
styles: “room,” “master,” and “control,” all with the same physical size and pin confi gu-
ration but with different component loads and roles. Figure 11-16 shows the results.

THE HVAC GREEN HOUSE MODELM 415

 Figure 11-15 Room board daughterboard design.

416 THE HVAC GREEN HOUSE MODEL

After stuffi ng, soldering, and carefully testing the daughterboards and the master
board, we attached them to the Propeller Proto Boards and used aluminum standoffs on
the four corners to stabilize the connections. The resulting board sets, shown in Figs. 11-17
and 11-18, were robust, compact, repairable, and reproducible.

So, now that we had the hardware designed for the house, it was time for some
software design.

 Figure 11-16 The “room,” “master,” and “control” daughterboards before being stuffed
and soldered.

 Figure 11-17 The “control” daughterboard mounted on the
Propeller Proto Board.

SOFTWARE DESIGN CONSIDERATIONS: WHAT GETS
PROCESSED WHERE?

Having processing power in each room made some functions intuitively obvious. Here
is a listing of the functions that could easily be handled by the single Propeller chip in
each room:

■ Servo PWM generation
■ Parallel LCD control
■ Pushbutton detection/debouncing
■ Temperature sensor polling
■ Humidity sensor polling
■ Status light control
■ Target temperature display
■ Communications (TX/RX)

Something to remember is that the design of the Propeller chip lends itself well to
providing parallel functions and services. For example, servo motors require a steady
stream of pulses in order to maintain their position. Therefore, it is possible to use an
object to constantly supply these pulses. You need only tell the servo control object at
what position the servo should be, and the object takes care of the rest. The same can be
said for the parallel LCD. There are Propeller objects that make interacting and updating
a parallel LCD as simple as interacting with the more expensive serial-controlled LCD

THE HVAC GREEN HOUSE MODEL 417

 Figure 11-18 The “master” daughterboard mounted on the Propeller Proto
Board.

418 THE HVAC GREEN HOUSE MODEL

units. A serial communication object can handle the complexity of sending and receiv-
ing data over a network with other devices. So, based on these capabilities, the room
board would handle the servo motor, the LCD, the temperature sensors, the humidity
sensor, user interface status lights, and network communications.

Since we knew there would be more than one room board, and we were hoping to
reduce the wiring costs by using a daisy-chain wiring confi guration, we decided to
use an “open collector” communication approach and allow all the boards to share the
transmit and receive pins. To make sure that only one board at a time would be trans-
mitting, a polling method of communication was chosen where the master board would
call each room board and only then would the room board send an answer to the master
board. To differentiate the room boards, we placed a bank of four jumpers connected to
Propeller pins P0-P3 to allow us to set an ID number, allowing a maximum of 16 room
boards on our “network” at one time. The room boards would simply ignore any poll
request that did not begin with their unique address.

Since the master board needs only two pins to perform its duties as the network
master (i.e., just transmit and receive lines), it has plenty of pins (and processing power!)
to allow for an advanced intuitive graphical user interface. By using the NTSC video
output object, it is a straightforward process to display statistical information about
system performance and present an advanced graphical user control interface through an
embedded NTSC video monitor. For our experimental platform, we are currently imple-
menting the NTSC video output to display current temperature, target temperature, and
vent position for each room on a Parallax Mini LCD A/V color display (Fig. 11-19).

 Figure 11-19 The NTSC monitor with the preliminary system test
data displayed.

The main job of the master board is to poll each of the room boards, retrieve their
current temperature, retrieve the desired temperature, and then perform calculations
that are used to direct the operations of the rest of the system. A quick recap of all the
boards, their functions, and their interactions is shown in Fig. 11-20.

The point of building the HVAC green house was to create a test platform that would
allow experimentation with different approaches to air system management and to
observe how these approaches perform in this small-scale environment. Though full-
scale environments may react differently, experimentation on a small scale can be quite
useful in determining what approaches to use in a full-scale environment.

The fl ow chart in Fig. 11-21 is the fi rst attempt to use an algorithm to balance and
maintain the air temperature in the building.

As you can see in Fig. 11-21, we fi rst calculate the average internal air temperature
and then compare that with the outdoor air temperature to determine if the system should
be in “heating” or “cooling” mode. The Spin code to accomplish that is listed here:

Note: Lines marked with the “←” symbol are intended to be on a single line and
wrap here due to space constraints.

THE HVAC GREEN HOUSE MODEL 419

Master Board

System Overview
Room Board

All needed data
is displayed on
NTSC.

LCD display.

Monitor button presses.

Respond to master board
information requests.

Respond to master board
vent position settings.

Respond to master board
settings.
Change mode from:
off/heating/cooling.
Change vents from:
recirculation/fresh air.

Respond to master board
information requests.

Monitor
temperature.

Control Board

Monitor
temperature.

Periodically calculate optimum
values for room boards and
control board.

Periodically poll room boards
for actual temperature and
desired temperature.

Periodically update room
board vent positions.

Periodically update control
board with heating or
cooling and recirculating or
fresh air.

Periodically poll
Control board
for outside air
temperature.

 Figure 11-20 System overview fl ow chart.

420 THE HVAC GREEN HOUSE MODEL

' Calculate Room averages
 OverallAverageTemp10X:=0
 OverallAverageDesiredTemp10X:=0
 repeat count from 0 to 4
 OverallAverageTemp10X:=OverallAverageTemp10X+

�

 LONG[RoomCurrentTemp10X+(count*4)]

�

 OverallAverageDesiredTemp10X:=OverallAverageDesiredTemp10X+

�

 LONG[RoomTargetTemp10X+(count*4)]

�

 OverallAverageTemp10X:= OverallAverageTemp10X/5
 OverallAverageDesiredTemp10X:= OverallAverageDesiredTemp10X/5

Vent positions are then calculated for each room based on its “need” according to its
temperature reading. Again, the Spin code to accomplish this is straightforward:

The first experimental algorithm for
calculating the vent positions is:
I (TargetTemp – CurrentTemp)|*10
if value > 100 then value = 100.

To compensate for back pressure the
experimental method is:
If sum(all rooms vents) < 100% then
 divide deficit/total rooms
 assign additional value to all rooms.

All calculated data is stored in global
variables that can be seen across
cogs.

This is accomplished by sending
memory pointers for each of the
variables from the main object
to the cog.

The cog updates these values where
they can be used by other cogs.

Calculate
Average actual temperature
Average requested temperature

Vent positions for all rooms

Heat/Cold/Off
recirculate or fresh air

Compensate for back pressure

Pause for X ms

Calculate

Calculate

“Master Board” Cog: Calculate Optimum Values

 Figure 11-21 Master board cog fl ow chart.

' Calculate Vent positions
 totalvent:=0
 repeat count from 0 to 4
 temp:= || (LONG[RoomTargetTemp10X+(count*4)]-

�

 LONG[RoomCurrentTemp10X+(count*4)])

�

 if temp > 10
 temp:=10
 temp:=temp*10
 LONG[RoomCurrentVentPosPercent+(count*4)]:=temp
 totalvent:= totalvent + temp

Next, using the calculated average internal air temperature compared to the external
air temperature allows us to automatically determine if the Peltier solid-state heat pump
should be operating in a “cooling” or “heating” mode:

''''''''''''' HEATING '''''''''''''
 if OverallAverageDesiredTemp10X > OverallAverageTemp10X ' Heating
 if OverallAverageDesiredTemp10X < outsideTemp
 'Fresh
 LONG[BlowerFanPower] := POWER_ON
 LONG[PeltierPower] := POWER_OFF
 LONG[PeltierDirection] := PELTIER_HOT_INSIDE
 LONG[AirSupply] := FRESH_AIR
 if OverallAverageDesiredTemp10X > outsideTemp
 'Recirc
 LONG[BlowerFanPower] := POWER_ON
 LONG[PeltierPower] := POWER_ON
 LONG[PeltierDirection] := PELTIER_HOT_INSIDE
 LONG[AirSupply] := RECIRCULATE

 ''''''''''''' COOLING '''''''''''''
 if OverallAverageDesiredTemp10X < OverallAverageTemp10X ' Cooling
 if OverallAverageDesiredTemp10X > outsideTemp
 'Fresh
 LONG[BlowerFanPower] := POWER_ON
 LONG[PeltierPower] := POWER_OFF
 LONG[PeltierDirection] := PELTIER_COOL_INSIDE
 LONG[AirSupply] := FRESH_AIR
 if OverallAverageDesiredTemp10X < outsideTemp
 'Recirc
 LONG[BlowerFanPower] := POWER_ON
 LONG[PeltierPower] := POWER_ON
 LONG[PeltierDirection] := PELTIER_COOL_INSIDE
 LONG[AirSupply] := RECIRCULATE

Once the mode of operation is determined, a comparison between the average desired
temperature and the current outdoor temperature could be made. If bringing the outside
air into the rooms would allow them to reach their target temperature without activating

THE HVAC GREEN HOUSE MODEL 421

422 THE HVAC GREEN HOUSE MODEL

the heat pump, the control board may be instructed to open the cooling tower bypass
doors, allowing outside air to be sent into the rooms.

This “fresh air” mode of operation could also be used in conjunction with various
gas sensors to react to an unhealthy air situation. For example, a buildup of carbon
monoxide due to leaving a fi re burning, a propane leak from a stove/heater, or even
a broken sewer line allowing methane into the building all could be dangerous, even
life-threatening situations. It would be possible, using sensors currently available from
Parallax, to detect these situations and not only alert the building occupants by sounding
an alarm, but also activate the “fresh air” mode.

This would bring fresh air indoors and vent the dangerous gases out of the building.
In the event that a fi re is detected, every room vent could be instructed to close in order
to reduce the spread of smoke through the building and keep from feeding “fresh air”
to the fi re.

Another real-world requirement has to do with backpressure. When the blower fan
turns on, it generates a specifi c number of cubic feet per minute of air. In order to operate
properly, a certain amount of air must be allowed to exit the ducting system. If the room
air registers are closed, backpressure may develop, possibly causing the condenser coil
to freeze up, the blower fan to overheat, and the compressor to be damaged. With such
serious consequences, avoiding backpressure in the system is a major concern.

Though a Peltier solid-state heat pump does not suffer from backpressure issues the
way a typical HVAC compressor-based system would, we decided to implement the
backpressure detection correction system in anticipation of dealing with real-world
issues.

To make the concept both easy to implement and to understand, we decided to use
the equivalent value of “100 percent open” of one air register as the minimum outlet
amount that must be available whenever the blower fan and heat pump were running.
This makes it simple, as it can be expressed as four of the room’s registers set to 0 percent
and one of the room’s registers set to 100 percent, or as each of the fi ve rooms’ air
registers set to a position of 20 percent open. A simple backpressure routine was added
to the master board software to manage distributing the “error” so backpressure would
automatically be regulated by the system.

The Spin code to implement our backpressure detection is shown here:

' Check for Pressure Buildup
 pressure:= 0 ' Reset amount of Vent Openings
 ' We assume here that at least 1 vent must be at 100% or
 ' the total sum of all open vents should add to 100%
 repeat count from 0 to 4 ' Calculate Total Vent Openings
 pressure := pressure + RoomCurrentVentPosPercent[count]

 if pressure < 100 ' If this is true then there is not enough venting
 ' need to allocate the remainder
 totalvent:=0
 overpressure := 100-pressure
 splitpressure:= overpressure/5

 pressure:= overpressure
 repeat count from 0 to 4
 RoomCurrentVentPosPercent[count]:=

�

 RoomCurrentVentPosPercent[count]+ splitpressure

�

 totalvent:= totalvent + RoomCurrentVentPosPercent[count]
 else
 pressure:= 0

Summary
The Propeller-powered HVAC green house, shown in Fig. 11-22, allowed us to explore
parallel processing and distributed computing. We delved into sensor sampling, network
communications, servo motor control, video display, and data recording.

The simplicity of the Spin language, combined with the power of objects, makes
it straightforward to convert theories into test cases. It also allows us to avoid labor
inertia—that reluctance we all have to abandon a design after discovering a fatal fl aw
or a simpler/better way to accomplish the task. The Propeller chip, with its multiple
processors and large library of preexisting software objects, allows us to change direc-
tion easily and reduce the amount of time required to see results.

The “Exercises” section lists a small sample of the things we have considered exploring
with our HVAC green house research platform. As real-world design criteria were taken
into account when building the system, it may well be possible to implement the system

 Figure 11-22 The Propeller-powered HVAC green house hardware.

SUMMARY 423

424 THE HVAC GREEN HOUSE MODEL

in a new home or to retrofi t an existing home. I would imagine it will only be a matter of
time until someone implements a system such as this in an attempt to see if they can cut
their heating and cooling costs, as well as make their home more comfortable.

IN CONCLUSION

At the time of this writing, we are continuing to develop software and test hardware
for the model. We have recently obtained the liquid propane, methane, and carbon
monoxide detectors, and plan to add the emergency venting routines to the model, as
shown in Fig. 11-23.

Note: If you would like to download the complete source code sets for all the
boards in the HVAC green house model, as well as view high-resolution color
pictures of the unit’s construction and videos of the unit in action, please visit: ftp.
propeller-chip.com/PCMProp/Chapter_11.

I would also like to take this opportunity to thank the team of amazing folks respon-
sible for the creation of the HVAC green house model:

Rick Abbot—Machining and mechanical fabrication

Paul Atkinson—Schematic design, PCB fabrication and assembly

 Figure 11-23 The room board LCD display when unsafe air conditions
are detected.

James Delaney—Software design, 3-D CAD design, and system assembly/testing

Jake Ivey—Carpentry

Gray Mack—Hardware prototyping, software design and implementation

Parallax Inc.—Component supplier

I would also like to thank André LaMothe and Ken Gracey for inviting me to par-
ticipate in this book and Chip Gracey for making the Basic Stamp and the Propeller
chip a reality!

Exercises
During the creation of the house and the various discussions that ensued, some ideas
were tossed around but not implemented that I thought might be a good “jumping off”
point for anyone wanting to explore a system similar to this one. Some of the idea would
require little or no modifi cation to the basic system as built.

1 Adding an IR (infrared) sensor to the master board. By adding an inexpensive IR
receiver module and using the SIRC object to decode Sony IR signals, you could
essentially use a handheld IR transmitter to control the system. In addition, the NTSC
video output could be routed to a conveniently located TV monitor. This would allow
the operator to review and change the system settings from their home entertainment
system or to monitor the HVAC conditions using “picture in picture” technology
available on many TV sets.

2 Adding an IR sensor to the room boards. The same IR sensor and SIRC object, when
added to the room board, would allow the room occupant to control the temperature
using a simple IR remote control (for example, use “channel up” and “channel down”
signals to adjust the temperature set point).

3 Add speech synthesis to provide voice alerts. During an alarm condition (i.e., detected
unhealthy air or fi re), using verbal alerts would allow the room occupant to know
to what the alarm issue relates without having to be close enough to the board to
read the LCD screen. In addition, if an IR remote was being used to adjust the target
temperature for the room, voice feedback could be used to “tell” the user what tem-
perature they have selected

4 Select some rooms for “fresh” air and others for recirculated air. If some occupants
preferred “fresh” air in their rooms, while others preferred recirculated air, it would
be possible to meet both preferences by alternating the air-handling method between
the rooms. To accomplish this, the air register in a selected room (or rooms) would
be set to 100 percent open, while the air registers in the remaining rooms would
be placed in the 100 percent closed position. Next, position the “bypass” doors to
the “fresh air” positions, and start the blower fan. After a few moments, reverse the
process for the rooms that have selected recirculated air.

EXERCISES 425

426 THE HVAC GREEN HOUSE MODEL

5 Mix recirculated and fresh air. As the bypass doors are controlled by servomotors,
they may be commanded to hold the doors in any position from 100 percent open
to 0 percent open. So, it would be possible to set a “mixture” amount if you want to
assure a certain amount of fresh air is moved through the building on a scheduled or
regular basis to reduce odors and to remove “stale” air from the building.

6 Error detection and alerts. If a room fails to reach the desired temperature in a
reasonable amount of time, the master board could show an alert or trouble condi-
tion. Another possible error-detection function could be if the room board has not
been polled by the master board in a specifi c period. When this “timeout” has been
reached, the board could show a “trouble” message on the LCD to alert the room
occupant that the board needs diagnostics and repair.

7 Alert required preventive maintenance. The master board is able to track the “run
time” for the blower fans so it would be possible to alert the user when fi lter replace-
ment intake cover cleaning and other maintenance may be required.

8 Go wireless! As was shown earlier in this book, it is possible to forgo the use of
CAT-5 cables for communication altogether. If the room boards, master board and
control board were all equipped with ZigBee modules and powered by a small “wall-
wart” -type power supply, it may be possible (depending on the distances involved)
to retrofi t an existing home HVAC system without the additional cost and disruption
of running cable through the building.

427

12
SYNTHESIZING SPEECH WITH

THE PROPELLER

Chip Gracey

Introduction
Have you ever wondered how to make a human voice in software? I’ve always been
tantalized by the idea, since speech is perhaps the ultimate analog communication pro-
tocol. It certainly predates computers by a long time! In this chapter, we are going to
“look” at actual speech and then synthesize it with the Propeller using small amounts
of data. Here’s what’s in store:

■ Using spectrographs to “see” speech
■ Synthesizing formants, vowels, and making speech sound like speech
■ Exploring the VocalTract object

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_12.

Using Spectrographs to “See” Speech
In order to synthesize speech, we need to know what’s in it. We could start by looking
at some waveforms of recorded speech. Figure 12-1 shows a partial waveform from
the utterance “to.”

I found this type of analysis to be a recipe for madness, as you easily fall into the morass
of trying to replicate details that are not important and then missing what matters.

428 SYNTHESIZING SPEECH WITH THE PROPELLER

Instead of worrying about waveforms, we need to look at the spectrum of speech over
time, since that is where our real information is. Figure 12-2 shows a spectrograph of
me counting from 1 to 10.

What you’re looking at is called a spectrograph. This is a 3-D representation of a
time-varying signal. From left to right, you have time. From bottom to top, you have fre-
quency. The intensity at each point is the energy of that frequency at that time. Looking
at speech from this perspective gives us the insight we need to go about synthesizing it.
In fact, this is what your ear “sees,” rather than a sputtering waveform.

Note the horizontal bands of darkness in the spectrograph. Those are harmonics of
my voice’s glottal pitch. I tend to talk at about 110 Hz, so there’s nominally about 110 Hz
of separation between each band. You can see the bands spread out and compress as
my voice deviates up and down in tone.

 Figure 12-1 A partial waveform from the utterance “to.”

 Figure 12-2 A spectrograph of me counting from 1 to 10.

USING SPECTROGRAPHS TO “SEE” SPEECH 429

Now notice the concentrations of dark bands distributed vertically. Those are the
result of resonances within my vocal tract. As I talk and change the shape of my vocal
tract, they move around—some up, some down. Each is a formant. The key to speech
synthesis is synthesizing these formants.

Information: These spectrographs are made using the Spectrum Display
software written by the author. It is included in the Chapter_12/Tools folder, and
the sample programs are in the Chapter_12/Source folder.

SYNTHESIZING FORMANTS AND VOWELS AND MAKING
SPEECH SOUND LIKE SPEECH!

Synthesizing formants was very challenging for me, and I spent a lot of time trying to do it. The
fi rst and most obvious approach was to synthesize individual sine waves for each harmonic of
the glottal pulse. This was way too much work and computationally impractical. I did, much
later, come up with one approach that was really simple, but falls into the “hack” category, as it
generated discontinuities in the output signal: Just generate sine waves at the center frequency
of each formant and reset their phases at each glottal pitch interval—like magic, the sine waves
diffuse and the pitch harmonics distribute nicely around the formants’ centers, giving you
instant vowel sounds! Good enough for a talking watch, but not a musical instrument.

Let’s look at some vowel sounds. In Fig. 12-3, I will make my glottal pitch very low
(like a frog) so that the pitch lines will be highly compressed, making it easier to see

 Figure 12-3 A spectrograph of me making some vowel sounds.

430 SYNTHESIZING SPEECH WITH THE PROPELLER

the formants. In sequence, I will pronounce the vowels “beet,” “hat,” “hot,” “soap,”
“borrow,” “ball.” Yep, “r” and “l” are vowels in synthesis.

Looking at the spectrograph, we can glean the formant frequencies for each vowel.
Table 12-1 lists the fi rst four formant frequencies (F1..F4) observed for each vowel.

If we can synthesize these formants, we can re-create those vowel sounds.
Now, I’ll introduce the VocalTract object. This is the neatest piece of software I’ve

ever written, and it’s the kind of program that the Propeller chip was designed for. All
the demos for this chapter were developed on the Propeller Demo Board, but they will
work with a minimal Propeller chip setup, as long as you have audio output connec-
tions to pins 10 and a simple R/C fi lter. The featured spectrograph program and all code
examples can be downloaded from this FTP address:

ftp://ftp.propeller-chip.com/PCMProp/Chapter_12

The VocalTract object synthesizes a human vocal tract in real time using a simple
frame of 13 byte-size parameters. All you have to do is change any parameters of interest
within the frame, then tell it how fast to transition to the new frame. It will internally
snapshot and queue up each frame you give it, then linearly interpolate each of
the 13 parameters from frame to frame, over specifi ed periods. Out comes continuous
speech that can be made very expressive, with amazingly little input!

A WORD ON SYNTHESIS ALGORITHMS

It used to be that synthesis algorithms were king several decades ago. With the
advent of big, inexpensive memory, however, rote recording and regurgitation have
become the norm for many areas in which algorithmic synthesis would be much
more fl exible, not to mention more memory-effi cient. Many speech synthesizers
today use recorded snippets of speech, which are concatenated at runtime to create
continuous speech. These programs and data often require many megabytes of
memory. In contrast, VocalTract is only 0.0013 MB in size (334 longs of code
+ 44 longs of variables per instance).

TABLE 12-1 FORMANT FREQUENCIES OF SOME SPOKEN VOWELS

 BEET HAT HOT SOAP BORROW BALL

F4 3700 3400 3200 3200 4700 3600

F3 3100 2500 2400 2400 1500 2600

F2 2000 1700 1050 950 1200 850

F1 310 730 750 530 580 560

EXPLORING THE VOCALTRACT OBJECT 431

Exploring the VocalTract Object
Figure 12-4 shows some documentation from the VocalTract object. Note the schematic
diagram and the parameters associated with each section.

The ASPIRATION section produces turbulence in the vocal tract. This is for breathy
sounds, but is always needed for natural-sounding speech. The GLOTTAL section pro-
duces continuous glottal pulses for voiced speech. The VIBRATO section modulates
the glottal pitch for singing and helps regular speech sound natural, as only robots are
known to speak in pure monotone. The pitch parameters are all registered to the musical
scale, with 48 steps per octave, making every fourth value a chromatic tone. Note that
the ASPIRATION and GLOTTAL sounds are summed before feeding into the formant
resonators F1..F4 that make vowel sounds. The NASAL section is an anti-resonator used
for M, N, and NG sounds. Lastly, the FRICATION section is for white-noise sounds,
like T, TH, SH, S, and F that occur at the tongue, teeth, and lips, or after the resonators.

 Figure 12-4 Documentation from the VocalTract object.

432 SYNTHESIZING SPEECH WITH THE PROPELLER

The FRICATION output is summed with the NASAL output to make the fi nal product:
a 32-bit, 20-kHz-updated audio signal, available as both a single-ended or differential
PCM signal, and as a continuously updated LONG in hub RAM.

Though all parameters are 8-bit within a frame, they are interpolated with 24 sub-bits,
so intraframe transitions are very smooth. Also, frames connect seamlessly with the
same precision, so there are never any discontinuities in the output signal. One thing a
user must be aware of is the likelihood of numerical overfl ow when volume levels get
high. You’ll know if this happens, believe me.

THE QUEST TO GENERATE FORMANTS

The resonators in VocalTract that make the formants are very simple, but it took a
lot of work and luck to fi gure out how to make them. Most resonator algorithms
require transcendental math operations, which need extreme precision around the
nearly asymptotic +/−1 sine and cosine points. This is fi ne for fl oating-point hard-
ware systems, but a disaster in fi xed-point math architectures. Also, you could
easily spend more time computing ever-changing resonator coeffi cients than you
would actually computing the resonator state for each output sample.

I needed a simpler way to build a resonator. Fortunately, the CORDIC algorithm
came to my rescue! CORDIC is an ingenious technique developed in the 1950s by
Jack E. Volder that uses binary shifts and adds to perform the transcendental functions.
In a nutshell, it can rotate (X,Y) coordinates effi ciently, without the edgy numerical
sensitivities of commonly used resonator algorithms. In each of VocalTract’s resonators,
the incoming signal is summed into Y of an (X,Y) point, which defi nes the state of the
resonator. Then, that point is CORDIC-rotated by an angle directly proportional to the
formant’s center frequency. The resulting Y of the (X,Y) point is passed on to the next
resonator. When in-band excitation is received, the (X,Y) point grows further from (0,0)
as it rotates around. Out-of-band excitation causes the amplitude to decay to the point
where the resonator pretty much just passes its input through to its output. If this wasn’t
simple enough, since the step-angle fed to each formant’s CORDIC rotator is directly
proportional to the formant’s center frequency, simple linear interpolation is used to
slide each formant from one frame’s setting to the next. Goodbye, math headaches!

Let’s now re-create those six vowel sounds that I recorded. Here’s all you need to
do (see Example1.spin):

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 v : "VocalTract"

VAR

 'vocal tract parameters
 byte aa,ga,gp,vp,vr,f1,f2,f3,f4,na,nf,fa,ff

PUB start

 v.start(@aa, 10, 11, -1) 'Start tract, output to pins 10,11

 repeat 'Keep repeating talk
 gp := rnd(50, 100) 'Set random glottal pitch
 vp := rnd(4, 24) 'Set random vibrato pitch
 vr := rnd(4, 10) 'Set random vibrato rate
 talk 'Talk

PRI talk

 setformants(310, 2000, 3100, 3700) 'Set formants for bEEt
 v.go(1)

 aa := 3 'Set breathiness
 ga := 30 'Set voiced volume
 v.go(100) 'Ramp up
 v.go(500) 'Sustain

 setformants(730, 1700, 2500, 3400) 'Set formants for hAt
 v.go(100) 'Transition
 v.go(500) 'Sustain

 setformants(750, 1050, 2400, 3200) 'Set formants for hOt
 ga := 12 'Volume down a little
 v.go(100) 'Transition
 v.go(500) 'Sustain

 setformants(530, 950, 2400, 3200) 'Set formants for sOAp
 v.go(100) 'Transition
 v.go(500) 'Sustain

 setformants(580, 1200, 1500, 4700) 'Set formants for boRRow
 v.go(100) 'Transition
 v.go(500) 'Sustain

 setformants(560, 850, 2600, 3600) 'Set formants for baLL
 v.go(100) 'Transition
 v.go(500) 'Sustain

EXPLORING THE VOCALTRACT OBJECT 433

434 SYNTHESIZING SPEECH WITH THE PROPELLER

 aa := 0 'Taper down to silence
 ga := 0
 v.go(100)

 v.go(500) 'Pause

PRI setformants(s1, s2, s3, s4)

 f1 := s1 * 100 / 1953
 f2 := s2 * 100 / 1953
 f3 := s3 * 100 / 1953
 f4 := s4 * 100 / 1953

PRI rnd(low, high)

 return low + ||(?cnt // (high - low + 1))

Recording the audio output of this program into our spectrograph, we get the data
shown in Fig. 12-5.

 Figure 12-5 A spectrograph of the vowels synthesized by Example1.spin.

You can see the formants transition as they did in the original voice recording.
Compare the waveforms in the top panes as well. They look a little different, but they
sound similar. Speech is a rather inexact phenomenon, thankfully.

By making ga := 0 in the previous program, you will hear the vowels whispered, since
there is some breath noise via aa. You can tell from listening to the synthesis that the transi-
tion from one vowel to another makes nice diphthongs. For example, going from “bEEt”
to “hAt” makes “yeah.” Vowel speech is pretty straightforward in this way.

How about some breathing sounds? Try modifying the PRI talk method in the previ-
ous program as follows (see Example2.spin):

PRI talk

 setformants(880,1075,2350,3050) 'Set "inhale" formants
 v.go(1)

 aa := 30 'Slowly ramp up
 v.go(1000)

 v.go(500) 'Sustain

 aa := 0 'Slowly ramp down
 v.go(1500)

 setformants(500,800,1100,2325) 'Set "exhale" formants
 v.go(1)

 aa := 10 'Ramp up
 v.go(500)

 aa := 0 'Slowly ramp down
 v.go(2500)

 v.go(500) 'Pause between breaths

This should clear up any confusion about the Propeller being able to sleep.
What about consonant sounds? I’ve made a lot of little discoveries about synthesizing

consonants by observing spectrographs and then experimenting with VocalTract. You
can easily do the same. Sometimes it’s necessary to speak very slowly and distinctly
into the spectrograph in order to see otherwise-subtle phenomena. Looking at the actual
waveform can give important hints, too—particularly around plosives (i.e., “t,” “p,” and
“k”) where there is silence.

It turns out there is just a handful of basic recipes you need to know in order to make
VocalTract pronounce any consonant. The biggest divider among consonants is whether
they are voiced or unvoiced. That is, is the glottal pulse going or is there just breathiness?
This distinction halves the number of basic consonant recipes.

EXPLORING THE VOCALTRACT OBJECT 435

436 SYNTHESIZING SPEECH WITH THE PROPELLER

Take a look at Table 12-2. Say each of these word pairs aloud, and note the voiced/
unvoiced difference in the underlined consonant.

The only difference within these sets of consonants is when your glottal pulses are
going. You’ll note that the rest of your vocal tract is in the same exact state when making
either sound. This means that controlling the ga parameter differently will be the key
to making one sound versus the other.

Let’s do “girl” and “curl.” To make these g/c sounds, you can initially set f1 to zero
and set f2 and f3 to the average of the following vowels’ f2 and f3. In other words, F1
will sweep upwards rapidly and F2 and F3 will begin in the center and then head down
and up, respectively, to their fi nal vowel positions. This is the base recipe for “g” and
“c” sounds. The difference between “g” and “c” is when the glottal pulses start: early
for “g” and late for “c.”

Substitute the following method for PRI talk in our program (see Example3.spin):

PRI talk

 setformants(0, 1350, 1350, 4700) 'Set formants for G/C before R
 v.go(1)

 aa := 20 'Set breathiness
 v.go(25) 'make brief G/C turbulence

 setformants(580, 1200, 1500, 4700)'Set formants for R
 ga := 30 'Voice up for G / skip for C
 v.go(150) 'Transition to R

 ga := 30 'Sustain / voice up for C
 v.go(100) 'Sustain / voice up for C
 v.go(200) 'Sustain

TABLE 12-2 RELATED CONSONANTS

VOICED UNVOICED

burl pearl

do to

van fan

girl curl

zoo sue

jock chalk

this thin

measure pressure

 setformants(560, 850, 2600, 3600) 'Set formants for L
 v.go(250) 'Transition
 v.go(100) 'Sustain

 aa := 0 'Taper down to silence
 ga := 0
 v.go(100)

 v.go(500) 'Pause

You should hear “girl.” If you comment out the fi rst ga := 30, you will hear “curl,”
as the glottal pulses will start later. Commenting out both ga := 30 lines will result in a
whisper that sounds like it could be “girl” or “curl.”

We can make this say “burl” and “pearl” as well. For “b” and “p” sounds, f1 and f2
must be set very low and swept upwards quite rapidly, while f3 and f4 can be the same
as the following vowel’s. Two changes must be made to our PRI talk method to make
“b” and “p.” First, replace setformants(0, 1350, 1350, 4700) with setformants(0,

200, 1500, 4700). Second, replace v.go(150) with v.go(50) to speed up the transition.
Now you should hear “burl.” By commenting out the fi rst ga := 30, you should hear
“pearl.”

While I won’t go over every consonant recipe here, as I’d have to rediscover them,
myself (thereby depriving you of the pleasure), we should cover the nasals “m” and “n.”
Let’s try to say the word “monster.” That way, we can slip in the “s” and “t” sounds to uti-
lize the FRICATION section, as well as the NASAL, completing our tour of VocalTract’s
parameters. First, I’ll say “monster” very slowly in a froggy voice (see Fig. 12-6).

EXPLORING THE VOCALTRACT OBJECT 437

 Figure 12-6 A spectrograph of me saying “monster,” followed by a baby “monster.”

438 SYNTHESIZING SPEECH WITH THE PROPELLER

After I said “monster,” our two-year-old daughter repeated “monster” unexpectedly.
You can see from those pitch lines how shrill her voice is.

Looking at the spectrograph, you can see the initial “m” followed by the open-mouth
“o” and then the “n.” After those nasal-vowel-nasal sounds, you can see the tall noise
burst of the “s” followed by silence, then the brief “t” burst going into the “r.”

The “m” and “n” sounds are enhanced by using the nasal anti-resonator. It sucks up
in-band energy rather than accumulating it, like the formant resonators do. This creates
a limited-spectrum vacuum, which can make things sound nasally.

By studying the spectrograph and incrementally building the word, I made a new PRI
talk method to say “monster” (see Example4.spin):

PRI talk

 setformants(170, 1100, 2600, 3200) 'Set formants for M
 nf := 2900 * 100 / 1953 'Set nasal for M
 na := 255
 v.go(1)

 aa := 10 'Ramp up M
 ga := 30
 v.go(150)

 setformants(700, 900, 2800, 4500) 'Set formants for O
 na := 0 'Nasal off
 v.go(50) 'Transition to O
 v.go(150) 'Sustain

 setformants(200, 1550, 2500, 4500) 'Set formants for N
 nf := 1550 * 100 / 1953 'Set nasal for N
 na := 255
 v.go(100) 'Transition to N
 v.go(100) 'Sustain

 aa := 0 'Ramp down N
 ga := 0
 v.go(100)

 na := 0 'Nasal off
 ff := 120 'Set frication for S
 v.go(1)

 fa := 10 'Ramp up S
 v.go(150)

 fa := 0 'Ramp down S
 v.go(75)

 ff := 80 'Set frication for T
 v.go(50) 'Sustain silence briefly

 fa := 10 'Ramp up T
 v.go(20)

 setformants(580, 1200, 1500, 4700) 'Set formants for R
 fa := 0 'Ramp down T
 v.go(20)

 aa := 10 'Ramp up R
 ga := 30
 v.go(50)
 v.go(150) 'Sustain

 aa := 0 'Taper down to silence
 ga := 0
 v.go(100)

 v.go(500) 'Pause

The timing of the “s” and “t” sounds took me a lot of trial and error to get tuned right.
Even so, you can see that the amount of data involved in synthesizing words is quite
low compared to making audio recordings of them (less than 1 percent).

To utilize VocalTract, it will take some experimentation on your part. Once
mastered, though, you will have gained untold insight into the mechanics of
speech that you’ll be eager to share with others who will be less interested. As a
side benefit, you will be able to add speech to your Propeller applications using
minimal resources.

In parting, here is an odd application that uses the StereoSpatializer object to mix
and place four separate VocalTracts into a stereo image. This demonstrates how the
Propeller’s multiple processors can be easily put to use in a cooperative fashion to
perform complex tasks of trivial value.

Top object called “SpatialBlah” (see SpatialBlah.spin):

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 voices = 4 'Voices can be 1..4
 buffer_size = $1000 'Spatializer buffer size

OBJ

 v [voices] : "Blah"
 s : "StereoSpatializer"

EXPLORING THE VOCALTRACT OBJECT 439

440 SYNTHESIZING SPEECH WITH THE PROPELLER

VAR

 'Spatializer parameters
 word input[4], angle[4], depth[4], knobs

 'Spatializer delay buffer
 long buffer[buffer_size]

PUB start | i, r

 repeat i from 0 to voices - 1 'Start voices and connect
 input[i] := v[i].start '..to spatializer inputs

 knobs := %000_011_100_101 'Start spatializer
 s.start(@input, @buffer, buffer_size, 11, -1, 10, -1)

 repeat 'Scan for done voices
 repeat i from 0 to voices - 1
 if v[i].done 'If voice done
 angle[i] := ?r '..Set new random angle
 depth[i] := ?r & $FFF '..Set new random depth
 v[i].go '..Start new "blah"

Lower object called "Blah" (see Blah.spin):

OBJ

 v : "VocalTract"

VAR

 'Vocal tract parameters
 byte aa,ga,gp,vp,vr,f1,f2,f3,f4,na,nf,fa,ff

PUB start

 v.start(@aa, -1, -1, -1) 'Start tract, no pin outputs
 return v.sample_ptr 'Return tract sample pointer

PUB go
 'Say "blah" randomly
 gp := rnd(60, 120)
 vp := rnd(4, 48)
 vr := rnd(4, 30)

 setformants(100, 200, 2800, 3750)
 v.go(rnd(100, 1000))

 setformants(400, 850, 2800, 3750)
 aa := 10
 ga := 20
 v.go(20)

 v.go(80)

 setformants(730, 1050, 2500, 3480)
 aa := 20
 ga := 30
 v.go(50)

 v.go(rnd(200, 1000))

 aa := 0
 ga := 0
 v.go(100)

PUB done

 return v.empty

PRI setformants(s1, s2, s3, s4)

 f1 := s1 * 100 / 1953
 f2 := s2 * 100 / 1953
 f3 := s3 * 100 / 1953
 f4 := s4 * 100 / 1953

PRI rnd(low, high)

 return low + ||(?cnt // (high - low + 1))

Summary
I hope you had fun reading this chapter and running the example programs. Speech
synthesis is a uniquely challenging and rewarding endeavor. It’s fascinated me for a
long time, and after writing this chapter, I just want to jump back in again and spend
a few more months writing more code to speak numbers, units, and who knows what
else. I know that if I got into it again, I’d probably gain all kinds of new knowledge
that would further my understanding of how speech works and how it can be done
even more effi ciently. You can do this yourself, if you have the interest and patience.
It would be a fun time!

SUMMARY 441

442 SYNTHESIZING SPEECH WITH THE PROPELLER

Exercises
1 Synthesize the word “he.” Hint: You’ll only use one set of formants.
2 Synthesize the word “she.” Hint: Add to your “he” program.
3 Synthesize “la, la, la…” to sing “Row, Row, Row Your Boat.”
4 Synthesize numbers 1 through 10.
5 Make a talking clock.

443

A
PROPELLER LANGUAGE REFERENCE

Categorical Listing of Propeller Spin
Language Elements
Elements marked with a superscript “a” are also available in Propeller Assembly.

BLOCK DESIGNATORS

CON Declare constant block

VAR Declare variable block

OBJ Declare object reference block

PUB Declare public method block

PRI Declare private method block

DAT Declare data block

CONFIGURATION

CHIPVER Propeller chip version number

CLKMODE Current clock mode setting

_CLKMODE Application-defi ned clock mode (read-only)

CLKFREQ Current clock frequency

_CLKFREQ Application-defi ned clock frequency (read-only)

CLKSETa Set clock mode and clock frequency

444 APPENDIX A

_XINFREQ Application-defi ned external clock frequency (read-only)

_STACK Application-defi ned stack space to reserve (read-only)

_FREE Application-defi ned free space to reserve (read-only)

RCFAST Constant for _CLKMODE: internal fast oscillator

RCSLOW Constant for _CLKMODE: internal slow oscillator

XINPUT Constant for _CLKMODE: external clock/osc (XI pin)

XTAL1 Constant for _CLKMODE: external low-speed crystal

XTAL2 Constant for _CLKMODE: external med-speed crystal

XTAL3 Constant for _CLKMODE: external high-speed crystal

PLL1X Constant for _CLKMODE: external frequency times 1

PLL2X Constant for _CLKMODE: external frequency times 2

PLL4X Constant for _CLKMODE: external frequency times 4

PLL8X Constant for _CLKMODE: external frequency times 8

PLL16X Constant for _CLKMODE: external frequency times 16

COG CONTROL

COGIDa Current cog’s ID (0–7)

COGNEW Start the next available cog

COGINITa Start, or restart, a cog by ID

COGSTOPa Stop a cog by ID

REBOOT Reset the Propeller chip

PROCESS CONTROL

LOCKNEWa Check out a new lock

LOCKRETa Release a lock

LOCKCLRa Clear a lock by ID

LOCKSETa Set a lock by ID

WAITCNTa Wait for system counter to reach a value

WAITPEQa Wait for pin(s) to be equal to value

WAITPNEa Wait for pin(s) to be not equal to value

WAITVIDa Wait for video sync and deliver next color/pixel group

PROPELLER LANGUAGE REFERENCE 445

FLOW CONTROL

IF Conditionally execute one or more blocks of code
...ELSEIF

...ELSEIFNOT

 ...ELSE

IFNOT Conditionally execute one or more blocks of code
...ELSEIF

 ...ELSEIFNOT

 ...ELSE

CASE Evaluate expression and execute block of code that satisfi es a
condition

...OTHER

REPEAT Execute block of code repetitively an infi nite or fi nite number
of times with optional loop counter, intervals, exit, and continue
conditions

...FROM

 ...TO

 ...STEP

 ...UNTIL

 ...WHILE

NEXT Skip rest of REPEAT block and jump to next loop iteration

QUIT Exit from REPEAT loop

RETURN Exit PUB/PRI with normal status and optional return value

ABORT Exit PUB/PRI with abort status and optional return value

MEMORY

BYTE Declare byte-sized symbol or access byte of main memory

WORD Declare word-sized symbol or access word of main memory

LONG Declare long-sized symbol or access long of main memory

BYTEFILL Fill bytes of main memory with a value

WORDFILL Fill words of main memory with a value

LONGFILL Fill longs of main memory with a value

BYTEMOVE Copy bytes from one region to another in main memory

WORDMOVE Copy words from one region to another in main memory

LONGMOVE Copy longs from one region to another in main memory

446 APPENDIX A

LOOKUP Get value at index (1..N) from a list

LOOKUPZ Get value at zero-based index (0..N−1) from a list

LOOKDOWN Get index (1..N) of a matching value from a list

LOOKDOWNZ Get zero-based index (0..N−1) of a matching value from a list

STRSIZE Get size of string in bytes

STRCOMP Compare a string of bytes against another string of bytes

DIRECTIVES

STRING Declare in-line string expression; resolved at compile time

CONSTANT Declare in-line constant expression; resolved at compile time

FLOAT Declare fl oating-point expression; resolved at compile time

ROUND Round compile-time fl oating-point expression to integer

TRUNC Truncate compile-time fl oating-point expression at decimal

FILE Import data from an external fi le

REGISTERS

DIRAa Direction register for 32-bit port A

DIRBa Direction register for 32-bit port B (future use)

INAa Input register for 32-bit port A (read-only)

INBa Input register for 32-bit port B (read-only) (future use)

OUTAa Output register for 32-bit port A

OUTBa Output register for 32-bit port B (future use)

CNTa 32-bit system counter register (read-only)

CTRAa Counter A control register

CTRBa Counter B control register

FRQAa Counter A frequency register

FRQBa Counter B frequency register

PHSAa Counter A phase-locked loop (PLL) register

PHSBa Counter B phase-locked loop (PLL) register

VCFGa Video confi guration register

PROPELLER LANGUAGE REFERENCE 447

VSCLa Video scale register

PARa Cog boot parameter register (read-only)

SPR Special-purpose register array; indirect cog register access

CONSTANTS

TRUEa Logical true: −1 ($FFFFFFFF)

FALSEa Logical false: 0 ($00000000)

POSXa Maximum positive integer: 2,147,483,647 ($7FFFFFFF)

NEGXa Maximum negative integer: −2,147,483,648 ($80000000)

PIa Floating-point value for PI: ~3.141593 ($40490FDB)

VARIABLE

RESULT Default result variable for PUB/PRI methods

UNARY OPERATORS

+ Positive (+X); unary form of Add

- Negate (−X); unary form of Subtract

- - Predecrement (− −X) or postdecrement (X− −) and assign

+ + Preincrement (++X) or postincrement (X++) and assign

^^ Square root

|| Absolute value

~ Sign-extend from bit 7 (~X) or postclear to 0 (X~)

~~ Sign-extend from bit 15 (~~X) or postset to −1(X~~)

? Random number forward (?X) or reverse (X?)

|< Decode value (modulus of 32; 0−31) into single-high-bit long

>| Encode long into magnitude (0−32) as high-bit priority

! Bitwise: NOT

NOT Boolean: NOT (promotes non-0 to −1)

@ Symbol address

@@ Object address plus symbol value

448 APPENDIX A

BINARY OPERATORS

Note: All operators in the right column are assignment operators.

= --and-- = Constant assignment (CON blocks)

:= --and-- := Variable assignment (PUB/PRI blocks)

+ --or-- += Add

- --or-- -= Subtract

* --or-- *= Multiply and return lower 32 bits (signed)

** --or-- **= Multiply and return upper 32 bits (signed)

/ --or-- /= Divide (signed)

// --or-- //= Modulus (signed)

#> --or-- #>= Limit minimum (signed)

<# --or-- <#= Limit maximum (signed)

~> --or-- ~>= Shift arithmetic right

<< --or-- <<= Bitwise: Shift left

>> --or-- >>= Bitwise: Shift right

<- --or-- <-= Bitwise: Rotate left

-> --or-- ->= Bitwise: Rotate right

>< --or-- ><= Bitwise: Reverse

& --or-- &= Bitwise: AND

| --or-- |= Bitwise: OR

^ --or-- ^= Bitwise: XOR

AND --or-- AND= Boolean: AND (promotes non-0 to −1)

OR --or-- OR= Boolean: OR (promotes non-0 to −1)

= = --or-- = = = Boolean: Is equal

<> --or-- <>= Boolean: Is not equal

< --or-- <= Boolean: Is less than (signed)

> --or-- >= Boolean: Is greater than (signed)

=< --or-- =<= Boolean: Is equal or less (signed)

=> --or-- =>= Boolean: Is equal or greater (signed)

SYNTAX SYMBOLS

% Binary number indicator, as in %1010

%% Quaternary number indicator, as in %%2130

$ Hexadecimal indicator, as in $1AF or assembly ‘here’ indicator

" String designator, as in "Hello"
_
 Group delimiter in constant values, or underscore in symbols

Object-Constant reference: obj#constant
. Object-Method reference: obj.method(param) or decimal point

.. Range indicator, as in 0..7

: Return separator: PUB method : sym, or object assignment, etc.

| Local variable separator: PUB method | temp, str

\ Abort trap, as in \method(parameters)

, List delimiter, as in method(param1, param2, param3)

() Parameter list designators, as in method(parameters)

[] Array index designators, as in INA[2]

{ } In-line/multi-line code comment designators

{{ }} In-line/multi-line document comment designators

' Code comment designator

" Document comment designator

Categorical Listing of Propeller
Assembly Language
Elements marked with a superscript “s” are also available in Spin.

DIRECTIVES

ORG Adjust compile-time cog address pointer

FIT Validate that previous instructions/data fi t entirely in cog

RES Reserve next long(s) for symbol

PROPELLER LANGUAGE REFERENCE 449

450 APPENDIX A

CONFIGURATION

CLKSETs Set clock mode at run time

COG CONTROL

COGIDs Get current cog’s ID

COGINITs Start, or restart, a cog by ID

COGSTOPs Stop a cog by ID

PROCESS CONTROL

LOCKNEWs Check out a new lock

LOCKRETs Return a lock

LOCKCLRs Clear a lock by ID

LOCKSETs Set a lock by ID

WAITCNTs Pause execution temporarily

WAITPEQs Pause execution until pin(s) match designated state(s)

WAITPNEs Pause execution until pin(s) do not match designated state(s)

WAITVIDs Pause execution until Video Generator is available for pixel data

CONDITIONS

IF_ALWAYS Always

IF_NEVER Never

IF_E If equal (Z = 1)

IF_NE If not equal (Z = 0)

IF_A If above (!C & !Z = 1)

IF_B If below (C = 1)

IF_AE If above or equal (C = 0)

IF_BE If below or equal (C | Z = 1)

IF_C If C set

IF_NC If C clear

IF_Z If Z set

IF_NZ If Z clear

IF_C_EQ_Z If C equal to Z

IF_C_NE_Z If C not equal to Z

IF_C_AND_Z If C set and Z set

IF_C_AND_NZ If C set and Z clear

IF_NC_AND_Z If C clear and Z set

IF_NC_AND_NZ If C clear and Z clear

IF_C_OR_Z If C set or Z set

IF_C_OR_NZ If C set or Z clear

IF_NC_OR_Z If C clear or Z set

IF_NC_OR_NZ If C clear or Z clear

IF_Z_EQ_C If Z equal to C

IF_Z_NE_C If Z not equal to C

IF_Z_AND_C If Z set and C set

IF_Z_AND_NC If Z set and C clear

IF_NZ_AND_C If Z clear and C set

IF_NZ_AND_NC If Z clear and C clear

IF_Z_OR_C If Z set or C set

IF_Z_OR_NC If Z set or C clear

IF_NZ_OR_C If Z clear or C set

IF_NZ_OR_NC If Z clear or C clear

FLOW CONTROL

CALL Jump to address with intention to return to next instruction

DJNZ Decrement value and jump to address if not zero

JMP Jump to address unconditionally

JMPRET Jump to address with intention to “return” to another address

TJNZ Test value and jump to address if not zero

TJZ Test value and jump to address if zero

RET Return to stored address

PROPELLER LANGUAGE REFERENCE 451

452 APPENDIX A

EFFECTS

NR No result (don’t write result)

WR Write result

WC Write C status

WZ Write Z status

MAIN MEMORY ACCESS

RDBYTE Read byte of main memory

RDWORD Read word of main memory

RDLONG Read long of main memory

WRBYTE Write a byte to main memory

WRWORD Write a word to main memory

WRLONG Write a long to main memory

COMMON OPERATIONS

ABS Get absolute value of a number

ABSNEG Get negative of number’s absolute value

NEG Get negative of a number

NEGC Get a value, or its additive inverse, based on C

NEGNC Get a value or its additive inverse, based on !C

NEGZ Get a value, or its additive inverse, based on Z

NEGNZ Get a value, or its additive inverse, based on !Z

MIN Limit minimum of unsigned value to another unsigned value

MINS Limit minimum of signed value to another signed value

MAX Limit maximum of unsigned value to another unsigned value

MAXS Limit maximum of signed value to another signed value

ADD Add two unsigned values

ADDABS Add absolute value to another value

ADDS Add two signed values

ADDX Add two unsigned values plus C

ADDSX Add two signed values plus C

SUB Subtract two unsigned values

SUBABS Subtract an absolute value from another value

SUBS Subtract two signed values

SUBX Subtract unsigned value plus C from another unsigned value

SUBSX Subtract signed value plus C from another signed value

SUMC Sum signed value with another of C-affected sign

SUMNC Sum signed value with another of !C-affected sign

SUMZ Sum signed value with another Z-affected sign

SUMNZ Sum signed value with another of !Z-affected sign

MUL <reserved for future use>

MULS <reserved for future use>

AND Bitwise AND two values

ANDN Bitwise AND value with NOT of another

OR Bitwise OR two values

XOR Bitwise XOR two values

ONES <reserved for future use>

ENC <reserved for future use>

RCL Rotate C left into value by specifi ed number of bits

RCR Rotate C right into value by specifi ed number of bits

REV Reverse LSBs of value and zero-extend

ROL Rotate value left by specifi ed number of bits

ROR Rotate value right by specifi ed number of bits

SHL Shift value left by specifi ed number of bits

SHR Shift value right by specifi ed number of bits

SAR Shift value arithmetically right by specifi ed number of bits

CMP Compare two unsigned values

CMPS Compare two signed values

CMPX Compare two unsigned values plus C

CMPSX Compare two signed values plus C

PROPELLER LANGUAGE REFERENCE 453

454 APPENDIX A

CMPSUB Compare unsigned values, subtract second if lesser or equal

TEST Bitwise AND two values to affect fl ags only

TESTN Bitwise AND a value with NOT of another to affect fl ags only

MOV Set a register to a value

MOVS Set a register’s source fi eld to a value

MOVD Set a register’s destination fi eld to a value

MOVI Set a register’s instruction fi eld to a value

MUXC Set discrete bits of a value to the state of C

MUXNC Set discrete bits of a value to the state of !C

MUXZ Set discrete bits of a value to the state of Z

MUXNZ Set discrete bits of a value to the state of !Z

HUBOP Perform a hub operation

NOP No operation, just elapse four cycles

CONSTANTS

NOTE: Refer to Constants in the Spin Language Reference section above.

TRUEs Logical true: −1 ($FFFFFFFF)

FALSEs Logical false: 0 ($00000000)

POSXs Maximum positive integer: 2,147,483,647 ($7FFFFFFF)

NEGXs Maximum negative integer: −2,147,483,648 ($80000000)

PIs Floating-point value for PI: ~3.141593 ($40490FDB)

REGISTERS

DIRAs Direction register for 32-bit port A

DIRBs Direction register for 32-bit port B (future use)

INAs Input register for 32-bit port A (read-only)

INBs Input register for 32-bit port B (read-only) (future use)

OUTAs Output register for 32-bit port A

OUTBs Output register for 32-bit port B (future use)

CNTs 32-bit system counter register (read-only)

CTRAs Counter A control register

CTRBs Counter B control register

FRQAs Counter A frequency register

FRQBs Counter B frequency register

PHSAs Counter A phase-locked loop (PLL) register

PHSBs Counter B phase-locked loop (PLL) register

VCFGs Video confi guration register

VSCLs Video scale register

PARs Cog boot parameter register (read-only)

UNARY OPERATORS

Note: All operators shown are constant-expression operators.

+ Positive (+X) unary form of Add

- Negate (−X); unary form of Subtract

^^ Square root

|| Absolute value

|< Decode value (0–31) into single-high-bit long

>| Encode long into value (0−32) as high-bit priority

! Bitwise: NOT

@ Address of symbol

BINARY OPERATORS

Note: All operators shown are constant-expression operators.

+ Add

- Subtract

* Multiply and return lower 32 bits (signed)

** Multiply and return upper 32 bits (signed)

/ Divide and return quotient (signed)

// Divide and return remainder (signed)

#> Limit minimum (signed)

<# Limit maximum (signed)

~> Shift arithmetic right

PROPELLER LANGUAGE REFERENCE 455

456 APPENDIX A

<< Bitwise: Shift left

>> Bitwise: Shift right

<- Bitwise: Rotate left

-> Bitwise: Rotate right

>< Bitwise: Reverse

& Bitwise: AND

| Bitwise: OR

^ Bitwise: XOR

AND Boolean: AND (promotes non-0 to −1)

OR Boolean: OR (promotes non-0 to −1)

= = Boolean: Is equal

<> Boolean: Is not equal

< Boolean: Is less than (signed)

> Boolean: Is greater than (signed)

=< Boolean: Is equal or less (signed)

=> Boolean: Is equal or greater (signed)

SYNTAX SYMBOLS

% Binary number indicator, as in %1010

%% Quaternary number indicator, as in %%2130

$ Assembly here indicator

" String designator, as in "Hello"
_
 Group delimiter in constant values, or underscore in symbols

Assembly literal indicator

: Assembly local label indicator

, List delimiter in declared data

' Code comment designator

" Document comment designator

{ } In-line/multi-line code comment designators

{{ }} In-line/multi-line document comment designators

Reserved Word List
These words are always reserved, whether programming in Spin or Propeller
Assembly.

PROPELLER LANGUAGE REFERENCE 457

_CLKFREQs CONSTANTs IF_NC_AND_NZa MINa PLL4Xs SUBSXa

_CLKMODEs CTRAd IF_NC_AND_Za MINSa PLL8Xs SUBXa

_FREEs CTRBd IF_NC_OR_NZa MOVa PLL16Xs SUMCa

_STACKs DATs IF_NC_OR_Za MOVDa POSXd SUMNCa

_XINFREQs DIRAd IF_NEa MOVIa PRIs SUMNZa

ABORTs DIRBd# IF_NEVERa MOVSa PUBs SUMZa

ABSa DJNZa IF_NZa MULa# QUITs TESTa

ABSNEGa ELSEs IF_NZ_AND_Ca MULSa# RCFASTs TESTNa

ADDa ELSEIFs IF_NZ_AND_NCa MUXCa RCLa TJNZa

ADDABSa ELSEIFNOTs IF_NZ_OR_Ca MUXNCa RCRa TJZa

ADDSa ENCa IF_NZ_OR_NCa MUXNZa RCSLOWs TOs

ADDSXa FALSEd IF_Za MUXZa RDBYTEa TRUEd

ADDXa FILEs IF_Z_AND_Ca NEGa RDLONGa TRUNCs

ANDd FITa IF_Z_AND_NCa NEGCa RDWORDa UNTILs

ANDNa FLOATs IF_Z_EQ_Ca NEGNCa REBOOTs VARs

BYTEs FROMs IF_Z_NE_Ca NEGNZa REPEATs VCFGd

BYTEFILLs FRQAd IF_Z_OR_Ca NEGXd RESa VSCLd

BYTEMOVEs FRQBd IF_Z_OR_NCa NEGZa RESULTs WAITCNTd

CALLa HUBOPa INAd NEXTs RETa WAITPEQd

CASEs IFs INBd# NOPa RETURNs WAITPNEd

CHIPVERs IFNOTs JMPa NOTs REVa WAITVIDd

CLKFREQs IF_Aa JMPRETa NRa ROLa WCa

CLKMODEs IF_AEa LOCKCLRd OBJs RORa WHILEs

CLKSETd IF_ALWAYSa LOCKNEWd ONESa# ROUNDs WORDs

CMPa IF_Ba LOCKRETd ORd SARa WORDFILLs

CMPSa IF_BEa LOCKSETd ORGa SHLa WORDMOVEs

CMPSUBa IF_Ca LONGs OTHERs SHRa WRa

CMPSXa IF_C_AND_NZa LONGFILLs OUTAd SPRs WRBYTEa

CMPXa IF_C_AND_Za LONGMOVEs OUTBd# STEPs WRLONGa

458 APPENDIX A

CNTd IF_C_EQ_Za LOOKDOWNs PARd STRCOMPs WRWORDa

COGIDd IF_C_NE_Za LOOKDOWNZs PHSAd STRINGs WZa

COGINITd IF_C_OR_NZa LOOKUPs PHSBd STRSIZEs XINPUTs

COGNEWs IF_C_OR_Za LOOKUPZs PId SUBa XORa

COGSTOPd IF_Ea MAXa PLL1Xs SUBABSa XTAL1s

CONs IF_NCa MAXSa PLL2Xs SUBSa XTAL2s

 XTAL3s

a = Assembly element; s = Spin element; d = dual (available in both languages); # = reserved for future use

459

B
UNIT ABBREVIATIONS

Computer Memory

byte 8 bits

word 2 bytes, 16 bits

long 2 words, 4 bytes, 32 bits

Kb kilobit, 1024 bits

KB kilobyte, 1024 bytes

K bytes kilobyte, 1024 bytes

K words 1024 words

K longs 1024 longs

MB megabyte, 1024 KB

GB gigabyte, 1024 MB

Rates

bps bits per second

kbps kilobits (1,000 bits) per second

Mbps megabits (1,000,000 bits) per second

cps cycles per second

fps frames per second

460 APPENDIX B

Hz hertz

kHz kilohertz

MHz megahertz

GHz gigahertz

rpm rotations per minute

MIPS million instructions per second

ppm parts per million

Time

min minutes

s seconds

ms milliseconds

µs microseconds

ns nanoseconds

Power-related

V volts

VDC volts direct current

VAC volts alternating current

mV millivolts

A ampere

mA milliamperes

µA microamperes

W watt

mW milliwatt

MW megawatt

Ω ohm

UNIT ABBREVIATIONS 461

kΩ kilo-ohm

MΩ mega-ohm

µF microfarads

nF nanofarads

pF picofarads

Distance

mm millimeters

cm centimeters

m meters

km kilometers

in inches

ft feet

yd yards

mi miles

Pressure

mbar millibars

Pa pascals

kPa kilopascals

Temperature

K Kelvin

°F Fahrenheit

°C Celsius

462 APPENDIX B

Other

mol moles

g acceleration

dB decibels

dBm decibels referenced to milliwatts

463

INDEX

“aaaaahhhh,” 166, 166f
Absolute Telnet terminal program, 357
abs_pressure-01.spin, 338
accelerometer clock (acCL), 252
accelerometer data line (acDT), 252–253
accelerometers, 148–152

dual-axis, 144, 145f
MEMS, 245, 245f, 247
Memsic 2125, 144, 145, 148–152, 149f, 152f, 225,

225f
Tri-Axis, 168, 169f

AcceptData method, 228
acCL. See accelerometer clock
ACK. See acknowledgement
acknowledgement (ACK), 288
AD592 temperature probe, 142, 142f
ADC. See analog-to-digital converter
ADC101S021 timing diagram, 171, 171f
add count command, 78
add0, 296
add1, 296
Address Resolution Protocol (ARP), 284
Adobe Photoshop, 258–259
Advanced Research Projects Agency (ARPA), 286
air bypass system, 405–407, 405f, 406f, 407f
air registers, 401, 403
almanac, 326
altimeter calibration formula, 335, 347
altimeter setting, 347
altitude, 334–335, 348, 348f
American Standard Code for Information Exchange

(ASCII), 177–179, 178f, 368–369

analog sensor conversion, 131–133
analog-to-digital converter (ADC), 334
AND-bit masking, 336
API. See application programming interface
API listing, 295, 295t
API mode

data acquisition and control using, 218–221,
218f

data framing and, 214–217, 215f, 217f
of XBee, 214–221

AppBee-SIP-LV, 194, 195f
application methods layer, of EtherX, 299–312

init method, 300–303
listen, connect, and connection established,

305–307
mode method, 299–300
open and close, 303–304
receive, 308–311
receive size register, 311–312
socket programming, 303–304
start and stop methods, 300
transmit, 307–308

application programming interface (API), 369
ARP. See Address Resolution Protocol
ASCII. See American Standard Code for Information

Exchange
ASM Cog Example.spin, 76–77, 78
ASPIRATION, 431
Assembly code, 5, 7f
assembly language code, 76–78
assembly layer, of SPI, 295–297
assignment operator, 30

Note: Page numbers referencing fi gures are followed by an “f ”; page numbers referencing tables are followed by a “t”.

464 INDEX

astable multivibrator, 153
asynchronous events, 3
asynchronous serial communication, 320
asynchronous serial sensors, 174–182, 174f

GPS module example, 179–182, 180f
serial communication signals examined, 175–179

audio-spectrum analysis, 121, 121f
automatic polling with Propeller, 212–214, 213f
Avery, Shane, 281
Avery Digital, 288, 294

backpressure, 422
Baker, Paul, 150
balancing indoor climates, 400–402
barometric formula, 334

constants, 334, 335t
barometric pressure sensors, 322–324, 323t, 332–338

calculating altitude from pressure, 334–335
reading, 335–336, 337f, 338

big-endian format, 340
bit-banging, 335
bitwise operator, 30
bitwise-ORing, 336
Blinker method, 68
blinking, in parallel Propeller, 32–34, 33f
blinking LED, 25–27, 26f, 31, 31f

more fl exible version, 28–32
test circuit, 62, 62f

block argument, 310
Block Designators, 24
block group indicators, 26f
blocking, 310–311
Bluetooth, 191
Boe-Bot Robot, 222, 224, 222f–224f
boot process, 359, 359f
bot code, 228–230
bot graphics, 226, 227f, 230–231
bot network code, 228–231

bot code, 228–230
bot graphics, 230–231
bot tilt controller, 228

Brad’s Spin Tool (BST), on Macintosh, 20
breakpoint marker, 110
breathing sounds, 435
BST. See Brad’s Spin Tool
building block objects, 34, 35f, 55–56

code moved to, 99–102
design guidelines, 56–57
Propeller programming, 37–38
start method and multiprocessor-related coding

mistakes, 58–62
Building Block.spin, 75–76
built-in languages, 5
Burrows, James, 247
bus interface, 293

Button Masher game, 281, 312–317
Butz, Albert, 400
byte arrays, 303
byte limitations, 308
bytemove (...), 331

:= (colon-equals), 24
cable runs, 409–410
Cadmium Sulfi de (CdS), 133
capacitive sensors, 138–139, 153, 156, 188

in RC decay circuits, 138–139
Carrier Detect, Multiple Access/Collision Avoidance

(CDMA/CA), 209
CAT-5 cable, 410–412
CCA. See Clear Channel Assessment
C-Cam-2A camera, 259, 260f
CCP. See Command Console Program; Console

Command Program
CDMA/CD. See Carrier Detect, Multiple Access/

Collision Avoidance
CdS. See Cadmium Sulfi de
charge transfer infrared, 144
chatting, 284
chip’s packages, 7, 8f
chip-to-chip interfacing, 393, 394f
circular SPI buffer, 290, 291f
civilian GPS receivers, 326
Clear Channel Assessment (CCA), 209
clear screen (CLS) command, 381, 386
client/host console development, 372–386

command-line interface, 379–380
initialization, 375–376
issuing commands to drivers, 380–386
serial communications, parsing, and tokenization,

377–379
clkfreq, 27, 68
_clkmode, 66
clock ticks, converting, 143
clock-cycle, 313
close method, 303–304
close socket, 303–304
CLS. See clear screen command
CMYK (cyan, magenta, yellow, and black),

275
cnt, 27
Code in one cog, 95–96
code in parallel, 5, 7f
coding errors

common root cause of, 51–52
multiprocessor related, 58–78

Cog 0 game logic, 314–315
Cog commands, 37
Cog RAM, 11, 11t, 12, 13f
cogid, 55
Cognew, 34

INDEX 465

cognew, 55
command, 37
keyword, 315

cogs (processors), 5, 11–12, 11t, 32
for Button Masher, 313–315
communication between, 54
exchanging information at different memory

addresses, 71–73
I/O pin access shared by, 52, 53f, 54
launched on Spin code, 7f
multiple, and debugging, 52, 54
Propeller using multiple, 6, 7f
start and stop to manage, 36

Cogs Not Sharing Info (Bug).spin, 71–72
Cogs Sharing Info (Bug fi xed).spin, 72–73, 74
cogstop command, 37
color blob fi nder, 276
colored objects, 275
COM. See Component Object Model
command console program (CCP), 365, 373, 373f
command library to slave/server, 387–388
command processing and execution, 366
commands, 359
comments, 26
Component Object Model (COM), 372
computer vision, 236

software for Propeller, 259–265
computer vision, of robots, 258–259, 258f

fi lters and bright spot in real time, 265–269, 270f
following line with camera, 270–272, 271f
OpenCV and Propeller integration, 276–279, 277f
state-of-the-art, with OpenCV, 274–276
track pattern, 272–274

computers
Ethernet and Internet protocols, 281–286, 283f,

287f
routers, 283

CON (constant variable declarations), 24
block, 39

Conduit cog, 252
Conduit object, 277
Console Command Program (CCP), 357
consonants, 435–437, 436t
context switch, 322
ControlPin method, 220
cooling tower, 403, 404f
coordinator nodes, 208
copy_buffer (...) method, 331
CORDIC, 432
core, grabbing semaphore, 317
Correct Loop Interval.spin, 67–68
Count, 29, 30
count (a cog RAM register), 78
counter modules and video generators, 14
CRC. See cycle redundancy check

CRC checksum byte, 340
CRC32 checksum, 282
crystal circuit, 38, 39f
crystal settings, 65f, 66
cycle redundancy check (CRC), 340

damper fl apper, 400
DanceBot, balancing robot, 235–255, 254f

building, 238–242, 238t, 239f, 239t, 240f, 241f
challenge of, 235–237, 236f, 237f
controlling, 255
following line with camera, 270–272, 271f
fuzzy logic control - the brains, 248–251, 249f
H-bridge schematic, 240, 240f
measuring position, 243–245, 243f
measuring tilt, 245–248, 245f, 248f
mechanics, 238–242, 239f
parts, 238, 238t
PropCV and, 259
Propeller pinouts, 238, 239t
state-of-the-art computer vision, with OpenCV, 274–276
system diagram, 273, 273f
track pattern, 272–274, 273f
ViewPort and balance of, 251–255, 252f
ViewPort measurement of tilt system, 254, 254f

DARPA. See Defense Advanced Research Projects
Agency

DARPA Grand Challenge (2005), 274
DAT (data and assembly code), 24

block in Spin programs, 78
data framing, API mode and, 214–217, 215f, 217f
data logger, 319–352
dataptr argument, 310
D-COM. See distributed COM
Debugger Kernel label, 114
debugging, 322

architecture that prevents bugs, 52, 54–55, 62
building block objects design guidelines, 56–57
code for multiple cores, 51–117
cogs exchanging information at different memory

addresses, 71–73
common multiprocessor coding mistakes, 58–78
development with Parallax Serial Terminal, 86–102
development with Propeller assembly debugger,

110–116
establish precise time base in another cog, 90
fi x bug exposed by testing, 95–96
forgotten literal # indicator for assembly language

code, 76–78
incorporate into building block object, 99–102
language and programming conventions to prevent

bugs, 55–56
memory collisions, 73–74, 74f, 93, 94f
method in new cog outgrows stack space, 78
missing call, 58–68

466 INDEX

466

debugging (Cont.):
missing I/O assignments in new cog, 62–64
Parallax Serial Terminal, 81–83
PASD, 83, 85, 86f
Propeller features that simplify, 52–56
remove test code, 98–99
survey of Propeller tools, 78–86
survey of software tools, 78–86
test bug fi x, 96–98
test in same cog, 87–90
test timekeeping code in another cog, 91–92, 92f
testing multiprocessors involved, 93–95
timing interval errors, 64–71
tools applied to multiprocessing problem, 86–116
TV terminal, 79–81, 80f, 81f, 117
variable display with, 86–87, 86f–87f
ViewPort, 83, 102–110, 252, 252f
wrong address passed to method, 74–76

Dec Equipment Corp, 379, 380f
Defense Advanced Research Projects Agency

(DARPA), 259
Delay Beyond Interval.spin, 69–71, 69f
destination MAC, 282
Digi International, 194
dira, 24, 26
Direct Memory Access (DMA), 321
Display Mic with ViewPort.spin, 167
Display P16 Input States.spin, 125
distributed COM (D-COM), 372
DMA. See Direct Memory Access
DNS. See Domain Name System
document comment, 37
Documentation view, 37, 37f
DOD. See United States Department of Defense
Domain Name System (DNS), 284
drivers

data fl ow from user to, 366
issuing commands to, 380–386
normalization of, for common RPC calls in future,

371–372
on-demand, 389
overview, 370–372, 371f, 371t
selecting, 365–366

DS1620 Digital Thermostat, 168, 169f
dso view, in ViewPort, 104, 106f
dual-axis accelerometer, 144, 145f
Duration, 29–30, 41
duty cycle outputs. See pulse and duty cycle outputs

Earth Viewer program, 351
Echo On check box, 61
EEPROM, 5, 6, 6f, 28f, 39f

EtherX card and signals of, 290
RAM vs., 27–28

end device nodes, 208

ephemeris, 326
Ethernet frame, 282, 282f, 285, 285f, 286f
Ethernet protocols, 281–286, 287f
Ethertype, 282
EtherX add-in card for Propeller-powered HYDRA,

287–312
application methods layer, 299–312
application programming interface, 294–312
read and write layers, 297–299

EtherX card, 282, 288, 289f
electrical interface of, 290–293, 290t
SPI mode 0, 293

EtherX Ethernet add-in card, 281
EtherX software model, 294, 294f
Eltima Software Serial to Ethernet Connector, 395, 396f
Excel, 319, 348
executable image, 34

face detector, 278, 279f
FAT fi le system, 339
FDDI. See fi ber distributed data interface
fi ber distributed data interface (FDDI), 282
FIFO. See First-In-First-Out
fi le transfers, 284
fi le upload box, 349, 349f
Find Hidden Bug in Timestamp.spin, 93–94
fi ndmax fi lter, 273
First-In-First-Out (FIFO), 321
5 V input supply voltage (VCC), 328–329
Flash object, 37–38
Flash.spin, 34
fl at memory architecture, 5
Float32, 58–59
FloatString, 59
forgotten literal # indicator for assembly language

code, 76–78
assembly language example, 76–77
inside ASM Cog Example.spin, 78

formants
generating, 432
synthesizing, 429–430

frame grabber, of PropCV, 259–264
Freescale Semiconductor MPX5050, 351
frequency output, of sensors, 153–155, 153f
FRICATION, 431–432
FSRW SD card object, 341, 343t
full duplex UART, 320f, 321
FullDuplexSerial_Mini.spin, 329–330
fuzzy logic control, 248–251, 249f
fuzzy speed classes, 249
fuzzy.spin, 250

game programming, 312–317
multicore approach using Propeller, 313–317
traditional microcontroller approach to, 313

INDEX 467

games
Button Masher, 281, 312–317
creating simple networked, 312–317
creation, 313
Halo, 284
HYDRA hobby video, 281

Garmin GPS, 330
gateway array, 303
GetData method, 219–220
Global Positioning System (GPS), 324

satellite constellation, 325f
global variables, 33
GLOTTAL, 431
GND. See Ground reference supply pin
Google Docs, 319
Google Earth, 351, 352
Google Maps, 350, 350f
GPS. See Global Positioning System
GPS altitude, vs. pressure altitude, 348, 348f
GPS Float packages, 180–182, 181f
GPS Google Map track, with speed, 350, 350f
GPS module sensor example, 179–182, 180f
GPS receiver, 322, 322f, 324–332

civilian, 316
reading sensor, 328–332

GPS tracking
barometric pressure sensors, 322, 322f
main Spin object, 344–346
portable and multivariable, 319–352

GPS tracking experiment, 346–351
data analysis, 347–351
plotting GPS tracks, 348–351

GPS trilateration, 326, 327f
GPS Visualizer Web site, 348–351
gps_buff, 331
GPS_IO_Mini.spin, 329, 331–332
Gracey, Chip, 52, 157, 427
Graner, Vern, 399
graphical user interface (GUI), 395, 396f
green house model

control electronics design for, 409–417
goals of, 402
layout of, 408, 408f
sketch of, 403f
software design for, 417–423
Spin code for, 422–423
structural/mechanical elements in, 402–408

ground method, 320
Ground reference supply pin (GND), 328–329
growth circuit varieties, 142–144
GUI. See graphical user interface
GWS PG-03, 247
Gyro module. See Parallax 1-Axis Gyro Module
gyro out (gyrOT), 253
Gyroscope Demo.spin, 170

gyroscopes, 246
gyrOT. See gyro out

Halo (game), 284
H-bridge schematic, 240, 240f
heating, ventilation, air conditioning (HVAC),

399
balancing, 400–402
control electronics for, 409–417
in green house model, 402–403
software design for, 417–423

Hebel, Martin, 189
HELP command, 360, 361f
hierarchy arrows, 26f
Hintze, Joshua, 319
HM55B Compass Module, 205
homogenous processor design, 5
Honeywell, 400
horizontal Sobel fi lter, 273
horizontal sync, 313
HSV (hue, saturation, and brightness),

275
Hub, 12, 116
hub and cog interaction, 54, 54f
HVAC. See heating, ventilation, air conditioning
hybrid fuzzy logic cascading PID controller,

250–251, 250f
HYDRA Game Development Kit, with EtherX card,

287–312, 289f, 290t
SPI assembly layer and, 295–296

HYDRA hobby video game, 281
HYDRA-Net, 287
HyperTerminal, 357

I2C. See Inter-Integrated Circuit
IC. See integrated chip
IDE-style debugger, 102
IEEE. See Institute of Electrical and Electronics

Engineers
if command, 37
Incorrect Loop Interval Code, 67–68, 90
Incorrect Loop Interval.spin, 67
indentation, 25, 27
infrared light emitting diode (IR LED), 133
infrared object detector, 133, 133f
init method, 300–303
initialization, 366, 375–376
Input pin, determining communication mode (/RAW),

329
Insonix, 85
Institute of Electrical and Electronics Engineers

(IEEE), 282, 303
integrated chip (IC), 334
intelligent devices, 410
interface technologies, 320–322, 320f

468 INDEX

Inter-Integrated Circuit (I2C), 290, 320, 320f, 390
bus basics, 392–393, 392f
low-level chip interfacing, 393–394

internal clock, 38–41
Internet

origins of, 286
UDP or TCP choice, 284

Internet Protocol (IP), 281–286, 287f
headers, 282, 283f

interruptions, 4
Intersema MS5540C miniature barometer module,

323, 332, 333f
inverted pendulum problem, 236
I/O pins, 11

bugs and, 52
map for connection to media devices, 364, 365t
missing assignments in new cog, 62–64
out of synch with ideal duration, 40, 40f
protecting, 136, 136f
shared access, 52, 53f

IP. See Internet Protocol
IP addresses, 282–284
ip array, 303
IP header, 282, 283f, 285, 285f, 286f
IR LED. See infrared light emitting diode

jmp #:loop command, 78

Kalman fi lter, 246, 252, 253
keyboard commands, 388
Keyboard objects, 57
Keyboard_Demo.spin, 80–81
keyboards, multiple, 362
Keyhole Software, 351
Keyhole-Markup Language (KML) fi le, 351, 362
KML fi le. See Keyhole-Markup Language fi le
KMZ fi le, 351
Kuhlman, Jim, 157

labor inertia, 423
LaMothe, André, 287, 288, 353
LAN. See local area lan network
LED_Blink method, 28–29
LED_Flash method, 30–34, 36, 38
LEDs. See light-emitting diodes
level shifter, with two FET transistors, 136–137, 137f
light and push-button circuits, 62
light-emitting diodes (LEDs), 17

blinking in parallel, 33f
blinking in sequence, 31, 31f
fl ashing, 34
schematic for exercises, 23f

Lindsay, Andy, 51, 119, 222
Linux fi le system, 339
LIS3LV02DQ, 247–248

listen, connect, and connection established method,
305–307

LISY300AL yaw rate sensor, 170
local area lan network (LAN), 282
local commands, 359

processing example, 381–382
to terminal, 387

local variables, 30
lock management commands, 95
lockclr, 317
locknew keyword, 317
locks, 54
lockset, 317
low-level chip interfacing, and SPI/I2C, 393–394
low-rate wireless personal area network (LR-WPAN),

191
nodes of, 208

LR-WPAN. See low-rate wireless personal area
network

Lynxmotion Geared Motor, 238

MAC address, 282, 283, 303
mac array, 303
Main method, 31–32
Main RAM, 12, 13f

access by cogs, 54, 54f
Main ROM, 12, 13f
main Spin object, 344–346, 345f
mapping strings, 230
Martin, Jeff, 1, 15
Master Clock pin input, 324
Master Input, Slave Output signal (MISO/SOMI),

290, 390, 390f
Master Output, Slave Input signal (MOSI/SIMO),

290, 296, 390, 390f
MCP3204, 157, 158f, 159, 160f
MCP3204 ADC, 168
MCP3208, 157
mean sea level (MSL), 347
memory access collisions, 54
memory addresses, 57
memory collisions, 73–74, 74f, 93, 94f

corrected with timestamp test, 97, 98f
MEMS. See microelectromechanical systems

technology
Memsic 2125 Accelerometer, 144, 145, 148–152,

149f, 152f, 225, 225f
method, 24
method call, with parameters, 29, 29f, 34, 34f
microcontroller

interfaces of sensors, 119–122
networked game creation approach of, 313
sensor interfacing with, 320–322

microelectromechanical systems (MEMS) technology,
148, 332

INDEX 469

microelectromechanical systems (MEMS) technology
(Cont.):

accelerometers, 245, 245f, 247
barometric pressure sensors, 332

Microsoft, 284
Microsoft COM technology, 372
Microsoft Excel, 319, 347–348
MISO/SOMI. See Master Input, Slave Output signal
mode descriptions, 391–392
mode method, 299–300
Modes, of SPI, 292–293
Mole, Perry James, 329
MonitorButtons method, 315–316
MonitorEthernet method, 315–317
MOSI/SIMO. See Master Output, Slave Input signal
most signifi cant bit (MSB), 297, 324
Motor cog, 252
Motorola, 290
Mouse objects, 57
MP3 downloads, 284
MS5540C barometric pressure sensor module, 323, 336
MSB. See most signifi cant bit
MSL. See mean sea level
multicore Propeller chip silicon, 1f
multicore Propeller microcontroller, 3–14

concept, 5–7
hardware, 7–14
lack of interrupts on, 4
using, 5–7

multicores, 1
advantages of, processor, 320–322
creating simple networked game, 312–317
defi ned, 2–3
Ethernet and Internet protocols, 281–286, 287f
EtherX add-in card for Propeller-powered

HYDRA, 287–312
importance of, 3
microcontroller designs, 52
for networking applications, 281–318
networking approach to game programming,

313–317
sensor vs. single CPU, 320–322
slave, 353

multiline comment, 30
multiple keyboards, 362
multiprocessing

of clones, 4f
debugging tools applied to problems, 86–116
multitasking vs., 2
on/off sensors example, 129–131

multiprocessor-related coding mistakes, 58–78
cogs exchanging information at different memory

addresses, 71–73
forgotten literal # indicator for assembly language

code, 76–78

multiprocessor-related coding mistakes (Cont.):
memory collisions, 73–74, 74f, 93, 94f
method in new cog outgrows stack space, 78
missing call to building block object’s start method,

58–62
missing I/O assignments in new cog, 62–64
PASD, 83, 85, 86f
timing interval errors, 64–71
ViewPort, 102–110
wrong address passed to method, 74–76

MXD2125 chip, 148–152
MXD2125 Simple Demo.spin,

150–151

NASAL, 431–432
National Marine Electronics Association (NMEA),

179, 327
National Television Systems Committee (NTSC),

259–260, 262f, 324, 359f, 415, 418, 418f
NES connectors, 287
networked bot, 225, 226f
networking and XBee transceivers overview, 191–193
networking applications

in green house model, 410–411
multicore use for, 281–318

nickname.method calls, 150
nickname.methodname syntax, 38
NMEA. See National Marine Electronics Association
nodes, base and remote, 205, 206f
nonblocking, 311
NTFS fi le system, 339
NTSC. See National Television Systems Committee
NTSC commands, 387
NULL-terminate, 331
Nurve Networks, LLC, 287

OBEX. See Propeller Object Exchange
OBJ (external object references), 24

block, 38
Object design guidelines, 56–57
Object Exchange Web site, 329
object not detected, 135, 135f
object.method calls, 56, 56f
objects, 5, 5f
on-demand drivers, 389
on/off sensors, 122–137, 123f

converting analog sensors to, 131–133
multiprocessing example, 129–131
with outputs greater than 3.3 V, 136–137
potentiometer in, 131, 131f
pushbutton array, 127–129, 127f
pushbuttons, 122–129, 126f
signaling dependence of, 133–135
single pushbutton, 124–125, 124f

open and close sockets, 303–304

470 INDEX

open method, 303–304
OpenCV, 274–276

colored objects, 275
face detector, 278, 279f
fi lter and Viola Jones object detector, 275–276
fi nding shapes, 276
fi nding specifi c objects, 275–276
Propeller integration and, 276–279, 277f

OpenOffi ce.org, 319
open-source, 274
optoisolators, 137
“.OUT” command, 384–386
outa, 24

P16 Multiprocessing Example.spin, 129–130
P18 to P16 Input Decisions.spin, 128–129
P18 to P16 Input States.spin, 127–128, 131
Parallax 1-Axis Gyro Module, 169–174, 170f, 171f
Parallax CO sensor, 133
Parallax Digital Compass, 168, 169f
Parallax GPS module, 174, 174f
Parallax Mini LCD A/V color display, 418, 418f
Parallax Object Exchange, 79, 329, 351
Parallax Propeller Forums, 45, 47, 47f
Parallax Serial Terminal, 43–45, 44f, 45f, 57–59, 61

debugging development with, 86–102
PST Debug LITE display in, 81–83, 82f
pushbuttons, 125–126, 126f
RC Decay measurement in, 141, 141f
timing interval for, 64, 65f

Parameters, 29
PASD. See Propeller Assembly Source Code

Debugger
PASD Debugger Kernel, 111
PASDebug object, 111
PASDebug.spin, 110–111
PC-to-XBee communications, 195–198, 196f, 198f, 199f
Peltier devices, 402–403, 404f, 422
peripheral ADCs, 156–159, 160f

example with MCP3204, 157, 158f, 159, 160f
Philips, 290
photodiodes, 138, 142–143, 143f
photo-editing software, 258–259
photoresistor, 119, 138, 141

as on/off circuit, 132, 132f
physical address, 282
PID. See proportional-integral-derivative controllers
Piezo Film Vibra Tab, 153, 153f
Pin, 29, 30
pin descriptions and specifi cations, 8, 8f, 9t

cogs (processors), 11–12, 11t
PING, 284
Ping))) Ultrasonic Distance Sensor, 145–148, 145f,

146f, 147f
object exchange example, 145–148

PING))) Ultrasonic Range Finder, 205, 207f
plosives, 435
PNA4602 infrared sensor, 133
polling remote nodes, 208–214

automatic polling with Propeller, 212–214, 213f
end devices, 209–212, 209f, 210f

Position cog, 252
post-clear operator, 37
potentiometer, 131, 131f, 141

position example, 139–142, 139f
power-on/reset delay, 28
precise time base establishment, 90
pressure altitude, vs. GPS altitude, 348, 348f
prevention, of bugs, 52, 54–55, 62, 116
PRI (private methods), 24, 36
printable ASCII characters, 177, 178f
Printable Ascii Table.spin, 178–179
printing, CMYK in, 275
processing and storing sensor data, 182–187

data transmission from Propeller to PC, 187
saving and retrieving, 183–187, 184f
synchronizing, 182–183

processing and tokenization, 366
processors. See cogs (processors)
PROMPT command, 360, 381
PropCV, 259–265, 260f, 274

frame grabber, 259–264
PropCVCapture object, 263–264, 264f, 268
Propeller

automatic polling with, 212–214, 213f
blinking process in parallel, 32–34, 33f
block diagram, 8, 10f
computer vision software for, 259–265
debugging simplifi ed by, 52–56
downloading to, 5, 6f
integration and OpenCV, 276–279, 277f
microcontroller, 51–117
multicore approach to games using, 313–317
multiple servos/sensors and, 409
NTSC waveform captured by, 262f
objects and resources, 45–48
parallel functionality in, 417
pin connections, 323, 323t
PropCV, 259–265
semaphores or locks, 317
using multiple cogs, 6, 7f
video streaming screenshot, 268, 269f

Propeller, as virtual peripheral for media applications,
353–397

client/host console development, 372–386
command console overview, 365
command library to slave/server, 387–388
compiling demo, 359
data fl ow from user to driver, 366
driver overview, 370–372, 371f, 371t

INDEX 471

Propeller, as virtual peripheral for media applications
(Cont.):

enhancing and adding features to system, 389
hardware setup, 355, 356f
intro, setup, and demo, 354–362, 354f
local command settings, 360–361, 361f
normalization of drivers for common RPC calls in

future, 371–372
on-demand drivers, 389
other communication protocols, 389–396
putting demo through paces, 359–360, 359f, 360f
remote commands sample, 361–362
remote procedure call primer, 366–370, 367f
selecting drivers, 365–366
software setup and installation, 357, 358f
system architecture and constructing prototype,

362–366, 363f, 364f, 365t
teaser demo, 358–362

Propeller Application, 34
launch, 5, 7f
object hierarchy, 5, 5f
objects to build, 5

Propeller Assembly Source Code Debugger (PASD),
83, 85, 86f

assembly debugging session, 115, 115f
development with, 110–116
F11 vs. F2, 114

Propeller Audio Spectrum Analyzer application, 168,
168f

Propeller chips, 364f
architecture that prevents bugs, 52, 54–55
different forms of, 17, 18f
identifi cation dialog showing version and port of,

21, 22f
multicore microcontroller, 1–14
packages, 7, 8f
wireless networking of, 189–191, 190f

Propeller Datasheet, 136
Propeller debugging tools, 78–86

Parallax Serial Terminal, 81–83
TV terminal, 79–81, 80f, 81f, 117
ViewPort, 83

Propeller Demo Board, 19–22, 20f, 30, 39f, 79, 79f,
80, 287, 429

LEDs blinking in parallel, 33f
LEDs blinking in sequence, 31, 31f
Prop Plug USB interface tool for, 21f

Propeller Demo Board Rev. C, 362
Propeller Demo Board Rev. D schematic, 363f
Propeller Education Kit breadboard, 80
Propeller Education Kit Labs: Fundamentals, 134
Propeller hardware, 7–14

architecture, 8, 10f, 11
cogs (processors), 11–12, 11t
counter modules and video generators, 14

Propeller hardware (Cont.):
Hub, 12
I/O pins, 11, 410
memory, 12
pin descriptions and specifi cations, 8, 8f, 9t
System Counter, 13–14

Propeller Library, 42, 55
keyboard object, 55–56

Propeller Object Exchange (OBEX), 45, 46f, 55, 79,
120, 120f

building block object for, 56–57
Propeller processors. See cogs (processors)
Propeller Professional Development Board, 80
Propeller programming

blinking LED, 25–27, 26f
building block object, 37–38
fi rst Propeller application, 22–25, 23f, 24f
hardware, 19–22
introduction, 15–49
Propeller Demo Board, 19–22, 20f
Propeller objects and resources, 45–48
software, 18–19, 19f
solutions to problems, 16–17, 16f
stack sizing, 41–45
timing, 38–41, 39f

Propeller Proto Board, 80
Propeller Proto Board USB, 412–413, 416
Propeller Tool software, 18–19, 19f, 45

Documentation view, 37, 37f
Parallax Serial Terminal, 43–45, 44f, 45f
Spin and Assembly languages in, 55
Stack Length object, 41–42

Propeller Webinar, 47, 48f
proportional-integral-derivative controllers (PID), 250
PST Debug LITE, 81–83, 82f

display, 130–131, 130f
Parallax Serial Terminal development and, 86–102
Test Time Counting.spin, 87–90

PUB LED-Blink, 25, 36
PUB LED-On statement, 24
PUB mode (opmode), 299
PUB out (c) command, 386
PUB write, 298
PUB (public methods), 24
pulse and duty cycle outputs, 144–152

Memsic 2125 Accelerometer module, 148–152
Ping))) Ultrasonic Distance Sensor, 145–148,

145f, 146f, 147f
pulse width modulation (PWM), 240, 410, 432
pushbutton array, 127–129, 127f
Pushbutton Decisions.spin, 126–127
pushbuttons, of on/off sensors, 122–129, 126f

pull-down and pull-up resistors, 123, 124f
PuTTY terminal program, 357, 358f
PWM. See pulse width modulation

472 INDEX

QTI module, 143, 144f

R-232, 291
RAM, 5, 6f

EEPROM vs., 27–28
/RAW. See Input pin, determining communication mode
RC Decay, 188

circuits, 138–139
growth circuit varieties and, 142–144
waitcnt tricks with, 71

RC Decay measurement, 137–139, 138f
in Parallax Serial Terminal, 141, 141f
potentiometer position example, 139–142, 139f

RC time measurement, 137
RCFAST setting, 64, 66
read and write layers, of EtherX card, 297–299
read method, 297–298, 300
read_calib_word(...), 336
read_data_word(...), 336, 338
readNMEA method, 330
read_rsr method, 311, 312
READY command, 361
real-time clock (RTC), 324
real-time streaming, 284
receive method, 308–311
receive size register, 311–312
remote commands, 359

processing example, 382–386
remote keyboard, 362
remote nodes, polling, 208–214
Remote Procedure Call (RPC), 353

ASCII or binary encoded, 368–369
compressing, for more bandwidth, 369–370
primer, 366–370, 367f
simplifi ed strategy, 370

remove test code, 98–99
repeat instruction, 25, 26
repeat keyword, 315
repeat loop, 67
reset button, LED after pressing, 27
resistive sensors, 138–140, 153, 156, 187

in RC decay circuits, 138–139
resistors, pull-down and pull-up, 123, 124f
resonators, 432
response code binary bit encoding format, 340, 341f
RFID reader, 174, 174f
RGB color space, 275
RJ-45 connectors, 412–413
“Robotics with the Boe-Bot” (Lindsay), 222
robots, 221–225, 222f, 223f

controlling with computer vision, 257–280
speed of, 269
vision-guided, 257–258

robots computer vision, 258–259, 258f
fi lters and bright spot in real time, 265–269, 270f
following line with camera, 270–272, 271f

robots computer vision (Cont):
OpenCV and Propeller integration, 276–279, 277f
state-of-the-art, with OpenCV, 274–276
track pattern, 272–274

rotation velocity, 169, 170f
round-robin memory access, 54, 54f
routers, 208, 283
RPC. See Remote Procedure Call
RS-232 serial link, 353, 355
RTC. See real-time clock
RX method, 308–311, 320

Sander, Hanno, 83, 235
Schenk, Andy, 85
Schwabe, Beau, 168
SCLK. See Serial Clock signal
SD card. See Secure Digital card
SD card adapter, 183, 184f
SD card test, 185, 185f
sdrw_test for PST.spin, 185–187
Secure Digital (SD) card, 319, 322, 322f, 339–343

commands in SPI mode, 339, 340, 340f, 342t, 343t
logging to, 341

Selmaware Solutions, 194
semaphore, core grabbing, 317
SendControl method, 228
SendUpdate method, 228
sensors

analog conversion for, 131–133
asynchronous serial, 174–182, 174f, 180f
audio-spectrum analysis, 121, 121f
barometric pressure, 322–324, 323t, 332–338, 337f
capacitive, 138–139, 153, 156, 188
frequency output, 153–155, 153f
GPS and overview of, 322–324, 325f
GPS module example, 179–182, 180f
GPS receiver reading, 328–332
GPS tracking barometric pressure, 322, 322f
LISY300AL yaw rate, 170
microcontroller interfacing and, 119–122, 320–322
MS5540C barometric pressure sensor module, 323, 336
multicore vs. single CPU, 320–322
multiple, 409
multiprocessing on/off example, 129–131
on/off, 122–137, 123f, 124f, 126f, 127f, 131f
Parallax CO, 133
Ping))) Ultrasonic Distance Sensor, 145–148, 145f,

146f, 147f
PNA4602 infrared, 133
processing and storing data from, 182–187, 184f
pulse and duty cycle outputs, 144–152
RC Decay and growth circuit varieties, 142–144
resistive, 138–140, 153, 156, 187
resistive, capacitive, diode, and transistor, 137–144
secure digital card, 339–343
synchronous serial, 168–174, 169f

INDEX 473

sensors (Cont.):
vision, 258–259, 258f
voltage output of, 156–168
wireless sensor network, 189, 231
Xband Motion Sensor, 153, 153f

Serial Clock signal (SCLK), 290, 296, 390, 390f
serial communication

asynchronous, 320
client/host console development and, 377–379
external crystal settings and, 65f, 66
signals examined, 175–179, 175f
synchronous, 172, 173f

Serial data input/output (SIO), 329
serial LCD unit, 409, 410, 417–418
Serial Peripheral Interface (SPI), 290, 320, 320f, 353,

390
assembly code layer, 294
assembly layer, 295–297
bus basics, 390–392
bus interface of, 293
circular buffer, 290, 291f, 391f
clocking modes, 391, 391t
electrical interface, 290, 291f, 390f
format of EtherX card commands of, 293, 293f
low-level chip interfacing, 393–394
Mode 0, 291
Mode 1, 291
Mode 2, 291
Mode 3, 292
mode descriptions, 391–392
timing diagram, 291, 292f
W5100 interface of, 293

serial RS-232 protocol, 291
serial sensors

asynchronous, 174–182, 174f, 180f
synchronous, 168–174, 169f

serial terminal output, on startup, 359, 360f
serial timing diagram, 171, 171f
serial UART hardware peripheral, 321, 321f
series resistors, 136, 136f
servo motors

cable run length and, 409–410
controlling multiple, 409
PWM-controlled, 409

set assignment, 30
Setup method calls, 150
Sigma-Delta ADC, 160–168

AC signal measurements test, 164–167, 164f, 165f
circuit and signals, 160f
component values, 163, 164f
DC signal measurements test, 161–164, 162f
multicore signal acquisition, analysis, and display,

167–168
object, 56

signaling dependence, of on/off sensors, 133–135
sine waves, 429

single CPU, multicore sensor vs., 320–322
single-core devices, 321

interrupts on, 4
SIO. See Serial data input/output
size argument, 310
Slave Select signal (SS), 290, 390, 390f
slave/server

command library to, 387–388
multicore processor as, 353

Sobel fi lter, 273
socket buffer, 308
socket programming, 303–304
Software tools, for debugging, 78–86
Solid State Gyro, 168, 169f
solid-state relays (SSRs), 137
SOUND command, 382–384
sound commands, 388
source MAC, 282
Southern Illinois University, 231
spectrographs

analyzing speech with, 427–430
VocalTract synthesis in, 434f, 437f

speech, spectrographic analysis of, 427–430
speed, 389

of object, 269, 270f
UDP and, 284

SPI. See Serial Peripheral Interface
SPI_DONE, 298
Spin code, 5, 7f

for green house model, 420–423
Spin compiler, 33
Spin language, 27
Spin Operators, 30
SPI_RD, 298
SPIRW global variable, 298
SPIRW variable, 296
SquareWave object, 134–135
SS. See Slave Select signal
SSRs. See solid-state relays
Stack Length object, 41–42
stack sizing, 41–45
stack space, 33

method in new cog outgrows, 78
Stack test, 43–45, 44f, 45f
Stanford University, 274, 286
star wiring design, 409–410
start method, 36, 55–56, 150, 300

multiprocessor-related coding mistakes and
building block object, 58–62

Start method calls, 61–62
start switch, 322, 322f
state-of-the-art computer vision, with OpenCV,

274–276
fi nding colored objects, 275
fi nding shapes, 276
fi nding specifi c objects, 275–276

474 INDEX

StereoSpatializer, 439
Stop method, 36–37, 300
stop switch, 322, 322f
subnet array, 303
subtractive color space, 275
synchronized delays, 40–41
synchronous serial, 156
synchronous serial communication, 172, 173f
synchronous serial sensors, 168–174, 169f

Parallax 1-Axis Gyro Module, 169–174
Synth object, 134
synthesizing

algorithms for, 430
formants/vowels, 429–430

System Clock Cycle, 13–14, 27
System Counter, 13–14, 41
system-level modular schematic, 362, 394f

task fi delity, 3
TCP. See Transmission Control Protocol
TCP header, 285, 285f
TCP socket, 303, 305, 308
TCP/IP, 282

EtherX card and, 288
to serial, 394–395, 394f

television
HSV in, 275
NTSC, 324
remotes, 144–145

temporary workspace. See stack space
terminal programs, 357, 358f
test code, remove, 98–99
Test Float32.spin application object, 58, 61
Test Gyro with ViewPort.spin, 173–174
Test IR Detect.spin, 134–135, 135f
Test MCP3208_fast.spin, 159
Test Missing Clock Settings. spin, 66
Test MXM2125 Simple Object, 152
Test Ping Sensor and Object.spin, 148
Test Sigma-DeltaADC.spin, 162–163
Test Simple RCTIME.spin, 140
Test Time Counting 2.spin, 90
Test Time Counting.spin, 87–90
Test Timestamp Bug Fix Full Speed.spin, 98–99
Test Timestamp Bug Fix.spin, 96–98, 98f
Test Timestamp from Another Cog. spin, 91–92, 93
Test Timestamp Object with ViewPort Events.spin,

107–108, 109f
Test Timestamp Object with ViewPort.spin, 103–104
Test Timestamp Object.spin, 99–100
Test Gyro.spin, 172
thermostats, 400
32.768 kHz signal, 324
three-code network, for monitoring and control,

189, 190f

three-node, tilt controlled robot with graphical
display, 221–231

bot network code, 228–231
overview and construction, 221–225, 222f, 223f
system operation overview, 225–227, 225f, 226f, 227f

tilt, 245–248, 245f, 248f
ViewPort measurement of DanceBot, 254, 254f

time, 40, 41, 41f
time method, 140–141
timekeeper label, 114
timekeeping code, test, 91–92, 92f
TimerMs method, 100
TimeStamp Dev (ASM).spin, 112–114
Timestamp Object.spin, 101–102
Timestamp test, 93–95, 95f, 98f
timestamp variable monitoring, 104, 105f
time-varying signals, 428
timing, 38–41, 39f, 171, 171f

synchronized delays, 40–41
timing diagram

ADC101S021, 171, 171f
for clock phase polarity = 0, 291, 292f
for clock phase polarity = 1, 291, 292f
serial, 171, 171f
SPI, 291, 292f

timing interval errors, 64–71
code that missed the waitcnt boat, 68–71
incorrect loop interval code, 67–68
wrong clock frequency settings, 64–66

Token Ring, 282
Top File.spin, 74–75
transistor-transistor logic (TTL), 410
Transmission Control Protocol (TCP), 282–284, 283f

UDP differences from, 284
transmit method, 307–308
Transmit windowpane, 60–61, 60f
Tri-Axis Accelerometer, 168, 169f
trilateration, GPS, 326, 327f
TSL230 Demo.spin, 155
TSL230 Light to Frequency Converter, 153–155, 153f
TTL. See transistor-transistor logic
TV terminal, 79–81, 80f, 81f, 117
TX method, 307–308, 320

UART. See Universal Asynchronous Receiver/Transmitter
UCLA, 286
UCSB, 286
UDP. See User Diagram Protocol
UDP header, 285, 286f
UDP socket, 303, 305, 308
United States Department of Defense (DOD), 324
Universal Asynchronous Receiver/Transmitter

(UART), 320f, 321, 321f
University of Florida, 231
University of Sassari, Italy, 231

INDEX 475

University of Utah, 286
U.S. Geological Survey (USGS), 348
USDA, Texas, 231
User Diagram Protocol (UDP), 282, 283f, 284

TCP differences from, 284
user input loop, 366
USGS. See U.S. Geological Survey

VAR (global variable declaration), 24, 36
VCC. See 5 V input supply voltage
verifying RAM, communication dialog, 24, 24f
vertical sync, 313
VGA. See Video Graphics Array
VGA commands, 388
VGA monitor, 359f
VIBRATO, 431
video fi lter chain scripting language and video

buffers, 266, 266f
Video Graphics Array (VGA), 17, 30
VIDEO4 option, 266, 268
View Serial Character with ViewPort.spin, 176–177
ViewPort, 83, 84f–85f, 102–110, 176–177

adding terminal functionality, 106–110, 109f
DanceBot, balancing robot and, 251–255, 254f
debugger, 252, 252f
dso view, 104, 106f
input/output signal measurement, 252, 253f
plug-in functionality of, 276–278
synchronous serial communication, 172, 173f
timestamp variable monitoring, 104, 105f
Viola Jones object detector in, 275–276
voltage displayed by, 165–166, 165f, 167

Viola Jones object detector, 275
virtual peripheral, Propeller as, 353–397
vision sensors, 258–259, 258f
vision-guided robots, 257–258
VocalTract, 429

consonants in, 435–437
recreating vowels with, 432–434
resonators in, 432
sections of, 431–432, 431f
spectrographs of, 434f, 437f
stereo images with, 439
vowels with, 432–434

Volder, Jack, 432
voltage output

peripheral ADCs, 156–159, 160f
of sensors, 156–168
Sigma-Delta ADC, 160–168, 160f

vowels
spectrograph of, 434f
synthesizing, 429–430
VocalTract code for, 432–434

VT100, 379, 380f

W5100 Ethernet Chip, 288, 294, 307, 308
buffers of, 311
init method, 300
interfaces, 293
mode method, 299
SPI assembly layer and, 295–296

W5300 chip, 293
waitcnt, 91

timing interval errors and, 68–71
tricks with RC Decay, 71

waitcnt command, 27, 68
waveforms, of speech, 427–428, 428f, 429f
Wi-Fi networks, 191–193
Willows Garage, 274
wireless networking, of Propeller chips, 189–191, 190f

hardware, 193
networking and XBee transceivers overview,

191–193, 192f
polling remote nodes, 208–214
sending data from Propeller to PC, 204–208, 206f,

207f, 208f
three-node, tilt controlled robot with graphical

display, 221–231
using XBee API mode, 214–221
XBee testing and confi guring, 193–204, 194f

wireless sensor network (WSN), 189, 231
WireShark, 285–286, 287f
Wiznet, 288
Wiznet Ethernet Chip, 320
write method, 298, 300, 308
wrong address passed to method, 74–76
wrong clock frequency settings, 64–66, 65f
wrong count, 78
WSN. See wireless sensor network

Xband Motion Sensor, 153, 153f
XB.AT_Init, 211
XBee, 191–193, 192f, 231

API mode, 214–221
exercise, 232–234, 232f
sending raw ADC/digital data, 232, 232f
updating versions of, 204

XBee testing and confi guring, 193–204, 194f
confi guration settings, 201–204, 202t–203t
equipment and software, 194
loop-back communication, 198–201, 199f
PC-to-XBee communications, 195–198, 196f,

198f, 199f
XBee ZigBee/Mesh series, 191
X-CTU software, 194, 199, 200f
Xerox PARC, 282
_xinfreq, 66

ZOC terminal program, 357

	Contents
	About the Authors
	Foreword
	Introduction
	Chapter 1 The Propeller Chip Multicore Microcontroller
	Introduction
	Multicore Defined
	Why Multicore?
	Multicore Propeller Microcontroller
	Summary
	Exercises

	Chapter 2 Introduction to Propeller Programming
	Introduction
	What's the Secret?
	Ready to Dive In?
	Let's Get Connected!
	Your First Propeller Application
	A Blinking LED
	RAM versus EEPROM
	A More Powerful Blink
	All Together Now
	Wrapping It Up
	Timing Is Everything
	Sizing the Stack
	Propeller Objects and Resources
	Summary
	Exercises

	Chapter 3 Debugging Code for Multiple Cores
	Propeller Features That Simplify Debugging
	Object Design Guidelines
	Common Multiprocessor Coding Mistakes
	Survey of Propeller Debugging Tools
	Debugging Tools Applied to a Multiprocessing Problem
	Summary
	Exercises

	Chapter 4 Sensor Basics and Multicore Sensor Examples
	Introducing Sensors by Their Microcontroller Interfaces
	On/Off Sensors
	Resistive, Capacitive, Diode, Transistor, and Other
	Pulse and Duty Cycle Outputs
	Frequency Output
	Voltage Output
	Synchronous Serial
	Asynchronous Serial
	Questions about Processing and Storing Sensor Data
	Summary
	Exercises

	Chapter 5 Wirelessly Networking Propeller Chips
	Introduction
	Overview of Networking and XBee Transceivers
	Hardware Used in This Chapter
	Testing and Configuring the XBee
	Sending Data from the Propeller to the PC
	Polling Remote Nodes
	Using the XBee API Mode
	A Three-Node, Tilt-Controlled Robot with Graphical Display
	Summary
	Exercise

	Chapter 6 DanceBot, a Balancing Robot
	Introduction
	The Challenge
	Building the DanceBot
	Controlling the DanceBot
	Summary
	Exercises

	Chapter 7 Controlling a Robot with Computer Vision
	Introduction
	Understanding Computer Vision
	PropCV: A Computer Vision System for the Propeller
	Apply Filters and Track a Bright Spot in Real Time
	Following a Line with a Camera
	Track a Pattern
	State-of-the-Art Computer Vision with OpenCV
	OpenCV and Propeller Integration
	Summary
	Exercises

	Chapter 8 Using Multicore for Networking Applications
	Introduction
	Ethernet and Internet Protocols
	EtherX Add-in Card for the Propeller-Powered HYDRA
	Creating a Simple Networked Game
	Summary
	Exercises

	Chapter 9 Portable Multivariable GPS Tracking and Data Logger
	Introduction
	Overview of the Sensors
	Main Spin Object
	Experiment
	Summary
	Exercises

	Chapter 10 Using the Propeller as a Virtual Peripheral for Media Applications
	Introduction
	Overview, Setup, and Demo
	System Architecture and Constructing the Prototype
	Remote Procedure Call Primer
	Virtual Peripheral Driver Overview
	Client/Host Console Development
	Exploring the Command Library to the Slave/Server
	Enhancing and Adding Features to the System
	Exploring Other Communications Protocols
	Summary
	Exercises

	Chapter 11 The HVAC Green House Model
	Introduction
	Exploring the Problem
	The HVAC Green House Model
	Summary
	Exercises

	Chapter 12 Synthesizing Speech with the Propeller
	Introduction
	Using Spectrographs to "See" Speech
	Exploring the VocalTract Object
	Summary
	Exercises

	Appendix A: Propeller Language Reference
	Categorical Listing of Propeller Spin Language Elements
	Categorical Listing of Propeller Assembly Language
	Reserved Word List

	Appendix B: Unit Abbreviations
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

