The Official Guide

F'REIERAMMINE
AND CUSTOMIZING
THE MULTICORE

PROPELLER

MIERDEDNTRDLLER

A 'y /_ = ’.‘b L b
SALA G ®
Shane Avery, Chip Gracey, Vern Graner, Martin Hebel, Joshua Hintze,,
André LaMothe, Andy Lindsay, Jeff Martin, and Hanno Sander

PROGRAMMING AND
CUSTOMIZING THE
MULTICORE PROPELLER™
MICROCONTROLLER

This page intentionally left blank

PROGRAMMING AND
CUSTOMIZING THE
MULTICORE
PROPELLER™
MICROCONTROLLER

THE OFFICIAL GUIDE

PARALLAX INC.

Shane Avery Chip Gracey Vern Graner
Martin Hebel Joshua Hintze André LaMothe
Andy Lindsay Jeff Martin Hanno Sander

i~

New York Chicago San Francisco Lisbon London Madrid
Mexico City Milan New Delhi San Juan Seoul
Singapore Sydney Toronto

The McGraw-Hill Companies

Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-166451-6
MHID: 0-07-166451-3
The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-166450-9, MHID: 0-07-166450-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in
corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (McGraw-Hill) from sources
believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any
information published herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or dam-
ages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors
are supplying information but are not attempting to render engineering or other professional services. If such services are
required, the assistance of an appropriate professional should be sought.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (McGraw-Hill) and its licensors reserve all rights in and
to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work
is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED AS IS. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WAR-
RANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work
will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall
be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages result-
ing therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-
cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or sim-
ilar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of
such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

For Ellie, my lovely wife.
S.A.

To my wife Kym, my children Nic and Sami,
and my Mom and Dad for all the support.
V.L.G.

For BJ and Kiris, thanks for being so supportive.
M. H.

For my wife Crystal and son Hunter.
J.M. H.

To inventors everywhere.

For Stacy, Kaitlin, and Kaylani
who were wonderfully supportive
despite being deprived of my attention.
J. M.

For Mami and Papi, thanks for everything.
H. S.

This page intentionally left blank

CONTENTS

About the Authors
Foreword

Introduction

Chapter 1 The Propeller Chip Multicore Microcontroller
Introduction 1
Multicore Defined 2
Why Multicore? 3
Multicore Propeller Microcontroller 3
Summary 14
Exercises 14

Chapter 2 Introduction to Propeller Programming
Introduction 15
What's the Secret? 16
Ready to Dive In? 17
Let’s Get Connected! 17
Your First Propeller Application 22
A Blinking LED 25
RAM versus EEPROM 27
A More Powerful Blink 28
All Together Now 32
Wrapping It Up 34
Timing Is Everything 38
Sizing the Stack 41
Propeller Objects and Resources 45
Summary 48
Exercises 49

Chapter 3 Debugging Code for Multiple Cores
Propeller Features That Simplify Debugging 52
Object Design Guidelines 56
Common Multiprocessor Coding Mistakes 58
Survey of Propeller Debugging Tools 78
Debugging Tools Applied to a Multiprocessing Problem 86
Summary 116
Exercises 117

15

51

vii

viii

CONTENTS

Chapter 4 Sensor Basics and Multicore Sensor Examples

Introducing Sensors by Their Microcontroller Interfaces 119
On/Off Sensors 122

Resistive, Capacitive, Diode, Transistor, and Other 137
Pulse and Duty Cycle Outputs 144

Frequency Output 153

Voltage Output 156

Synchronous Serial 168

Asynchronous Serial 174

Questions about Processing and Storing Sensor Data 182
Summary 187

Exercises 188

Chapter 5 Wirelessly Networking Propeller Chips

Introduction 189

Overview of Networking and XBee Transceivers 191
Hardware Used in This Chapter 193

Testing and Configuring the XBee 193

Sending Data from the Propeller to the PC 204
Polling Remote Nodes 208

Using the XBee API Mode 214

A Three-Node, Tilt-Controlled Robot with Graphical Display 221

Summary 231
Exercise 232

Chapter 6 DanceBot, a Balancing Robot

Introduction 235

The Challenge 235

Building the DanceBot 238
Controlling the DanceBot 255
Summary 255

Exercises 255

Chapter 7 Controlling a Robot with Computer Vision

Introduction 257

Understanding Computer Vision 258

PropCV: A Computer Vision System for the Propeller 259
Apply Filters and Track a Bright Spot in Real Time 265
Following a Line with a Camera 270

Track a Pattern 272

State-of-the-Art Computer Vision with OpenCV 274
OpenCV and Propeller Integration 276

Summary 279

Exercises 280

Chapter 8 Using Multicore for Networking Applications

Introduction 281
Ethernet and Internet Protocols 281
EtherX Add-in Card for the Propeller-Powered HYDRA 287

119

189

235

257

281

CONTENTS _ ix

Creating a Simple Networked Game 312
Summary 318
Exercises 318

Chapter 9 Portable Multivariable GPS Tracking and
Data Logger

Introduction 319

Overview of the Sensors 322
Main Spin Object 344
Experiment 346

Summary 351

Exercises 352

Chapter 10 Using the Propeller as a Virtual Peripheral
for Media Applications

Introduction 353

Overview, Setup, and Demo 354

System Architecture and Constructing the Prototype 362
Remote Procedure Call Primer 366

Virtual Peripheral Driver Overview 370

Client/Host Console Development 372

Exploring the Command Library to the Slave/Server 387
Enhancing and Adding Features to the System 389
Exploring Other Communications Protocols 389
Summary 396

Exercises 396

Chapter 11 The HVAC Green House Model

Introduction 399

Exploring the Problem 400

The HVAC Green House Model 402
Summary 423

Exercises 425

Chapter 12 Synthesizing Speech with the Propeller

Introduction 427

Using Spectrographs to “See” Speech 427
Exploring the VocalTract Object 431
Summary 441

Exercises 442

Appendix A Propeller Language Reference
Categorical Listing of Propeller Spin Language Elements 443

Categorical Listing of Propeller Assembly Language 449
Reserved Word List 457

Appendix B Unit Abbreviations

Index

319

353

399

427

443

459
463

This page intentionally left blank

ABOUT THE AUTHORS

Shane Avery graduated from Cal Poly, San Luis Obispo,
with a bachelor’s degree in computer engineering and from
Cal State Northridge with masters in electrical engineering.
His graduate work focused on system-on-chip design in
FPGAs and ASICs. At Ziatech/Intel he debugged single-
board CompactPCI computers for the telephony industry.
He then worked with a toy company, Logic-Plus, developing
the Verilog code for the FPGA inside a toy video camera that
would insert static images onto the background. Currently,
he works for the United States Navy, designing and devel-

oping embedded hardware for new military weapons. This year he began his first
company focusing on embedded electronics, called Avery Digital.

Chip Gracey, President of Parallax Inc., has a lifelong
history of invention and creativity. His early programming
projects included the famous ISEPIC software duplication
device for the Commodore 64 and various microprocessor
development tools, yet he is most well-known for creating
the BASIC Stamp®. Chip Gracey is the Propeller chip’s
chief architect and designer. His formal educational back-
ground is nearly empty, with all of his experience being the
result of self-motivation and personal interest. Chip contin-
ues to develop custom silicon at Parallax.

Vern Graner has been in the computer industry since being
recruited by Commodore Business Machines in 1987. He
has had a lifelong relationship with electronics, computers,
and entertainment encompassing multiple fields including
animatronics, performance art, computer control, network
systems design, and software integration. As president of
The Robot Group Inc., Vern’s work has been featured at
Maker Faire, First Night Austin, SXSW, Linucon, Dorkbot,
Armadillocon, and even in SPIN magazine. In 2007, he was
awarded The Robot Group’s DaVinci Award for his contri-
butions to the arts and technology community. Though some

of his writings have been featured in SERVO magazine, he is currently best known
for his regular contributions to Nuts and Volts magazine as the author of the monthly

xi

xii

ABOUT THE AUTHORS

column “Personal Robotics”. He currently is employed as a senior software engineer
in Austin, Texas.

Martin Hebel holds a master of science in education (MS)
and bachelor of science in electronics technologies (BS),
obtained from Southern Illinois University Carbondale
(SIUC) following 12 years of service as a nuclear technician
on submarines. He is an associate professor in Information
Systems and Applied Technologies at SIUC, instructing in
the Electronic Systems Technologies program where he
teaches microcontroller programming, industrial process
control, and networking. His research in wireless sensor
networks, using controllers including the Propeller chip, has
led to agricultural research with SIUC’s agricultural sciences,
University of Florida, and funding through a USDA grant.

He has also collaborated with researchers at the University of Sassari, Italy in
biological wireless monitoring using parallel processing, which was presented at a
NATO conference in Vichy, France.

Joshua Hintze graduated from Brigham Young University
with bachelor’s and master’s degrees in electrical engineer-
ing. His main research focus was unmanned aerial vehicles
where he helped create the world’s smallest fully func-
tional autopilot (patent received). Before graduating, Josh
took a research position at NASA Ames Research Center
in Moffett Field, California. At NASA, Josh designed
algorithms for landing autonomous helicopters by scan-
ning potential landing locations with stereo cameras and
machine vision algorithms. Josh is cofounder of Procerus

Technologies that builds and ships autopilots all over the world, many of which end
up in military applications. He has written numerous published articles and was the
author of “Inside The XGS PIC 16-Bit,” published by Nurve Networks.

André LaMothe holds degrees in mathematics, computer
science, and electrical engineering. He is a computer scientist,
3D game developer, and international best-selling author. He
is the creator of Waite Group’s “Black Art Series” as well
as the series editor of Course PTR’s “Game Development
Series.” Best known for his works in computer graphics and
game development, he is currently the CEO of Nurve Networks
LLC, which develops and manufactures embedded systems
for educational and entertainment channels. Additionally, he
holds a teaching position currently at Game Institute.

ABOUT THE AUTHORS _xiii

worked for Parallax Inc.

Andy Lindsay is an applications engineer and a key
member of Parallax’s Education Department. To date, Andy
has written eight Parallax educational textbooks, including
What’s a Microcontroller?, Robotics with the Boe-Bot, and
Propeller Education Kit Labs: Fundamentals. These books
and their accompanying kits have gained widespread accep-
tance by schools in the United States and abroad, and some
have been translated into many languages. Andy earned a
Bachelor of Science in electrical and electronic engineer-
ing from California State University, Sacramento. He has
for over ten years, where he continues to write, teach, and

develop educational products.

Jeff Martin is Parallax’s senior software engineer and
has been with the company for 13 years and counting. He
attended California State University Sacramento, studied
many areas of computer science, and earned a Bachelor of
Science in system’s software. In 1995, Jeff visited Parallax
to purchase a BASIC Stamp 1. He rapidly learned and
mastered the original BASIC Stamp and was shortly after
offered a position to support it and other Parallax products.
He is currently in the R & D department and is responsible
for Parallax software IDEs, key printed manuals, and hard-

ware maintenance for core product lines. Jeff collaborates closely with Chip Gracey
and the rest of the R & D group on the Propeller product line, from hardware to soft-

ware and documentation.

Hanno Sander has been working with computers since
he programmed a lunar lander game for the z80 when he
was six. Since then he graduated from Stanford University
with a degree in computer science and then started his
corporate career as an Internet entrepreneur. He moved to
New Zealand in 2005 to spend time with his growing family
and developed sophisticated, yet affordable robots, starting
with the DanceBot. His technical interests include computer
vision, embedded systems, industrial control, control theory,
parallel computing, and fuzzy logic.

About Parallax Inc.

Parallax Inc., a privately held company, designs and manufactures microcontrollers,
embedded system development tools, small single-board computers, and robots that
are used by electronic engineers, educational institutions, and hobbyists.

This page intentionally left blank

FOREWORD

In the early and mid-1970s, semiconductor companies offered only a few rudimentary
microprocessors that most people have never heard of or have long forgotten. Now,
though, engineers, scientists, entrepreneurs, students, and hobbyists can choose from
a wide spectrum of processors, some of which include two, four, or more processor
“cores” that let a chip perform several tasks simultaneously. Then why do we need a
new type of eight-core processor developed by Parallax, a small company in Rocklin,
California? The reasons are many.

The Propeller chip takes a different approach and offers developers eight processors
with identical architectures. That means any 32-bit processor, or cog, can run code that
could run on any other cog equally well. You can write code for one cog and simply
copy it to run exactly the same way on another cog. This type of copy-and-paste
operation works well if you have, say, several identical servos, sensors, or displays
that run on one Propeller chip.

And unlike many multicore devices, a Propeller chip needs no operating system, so
you don’t have to learn Linux, Windows CE, VxWorks, or another operating system
to jump in and write useful code. Code-development tools are free, and you don’t need
add-ons that cut into your budget. The many projects in this book will help you better
understand how to take advantage of the Propeller chip’s capabilities.

The Propeller chip also simplifies operations and coordination of tasks because it
offers both shared and mutually exclusive resources. The former includes the chip’s 32
I/0 pins and its system counter, which gives all cogs simultaneous access to infor-
mation used to track or time events. Any cog can control any I/O pin, which means
you can assign I/O pins as needed and easily change assignments late in a project
schedule.

A central “Hub” controls access to the mutually exclusive resources such that each
cog can access them exclusively, one at a time. Think of the Hub as a spinner—or
propeller!—that rotates and gives each cog access to key resources for a set time.
Hub operations use the Propeller Assembly language instructions rather than the aptly
named higher-level Spin language. The Propeller’s main memory is one of the mutu-
ally exclusive resources. You would not want two programs to try to access memory
simultaneously or to modify a value in use by another cog.

The Propeller chip and Parallax offer users another, less tangible, asset: a devoted
cadre of users and developers. Parallax has an active Propeller Chip forum, with more
than 430 pages of posts that go back to early 2006. Parallax forum membership
has reached more than 17,000 registered members. Run a Google search for
“Parallax Propeller,” and you’ll find individual projects, discussions, products, and
code. If you run into a problem getting your hardware or software to work, someone

Xv

xvi

FOREWORD

on the Internet usually has a suggestion or comment—often within a few minutes.
Parallax also offers many add-on devices, such as accelerometers, ultrasonic range
sensors, GPS receivers, and an image sensor, that help bring projects and designs to
fruition rapidly.

Over the years I have worked with many types of processors, from early eight-bit
devices to new ARM-based chips. But none of the chip suppliers has offered such
a wide variety of practical educational information as Parallax offers for its proces-
sors. Anyone interested in the Propeller will find many articles, application notes,
lab experiments, and manuals on the company’s Web site to ensure they get off to a
good start and maintain their interest and momentum as they learn more. I like the
Parallax Propeller chip and have enjoyed working with it, although my coding skills
are still somewhat basic. You’ll like the Propeller, too, even if you only have a basic
curiosity about how computer chips can easily control things in the real world. As you
learn how to measure things such as voltage, temperature, sound, and so on, you’ll
get hooked. The Propeller chip is not only powerful and capable—it’s easy and fun
to work with.

JoN Titus
Friend of Parallax Inc. and microcomputer inventor
Herriman, Utah

INTRODUCTION

Parallax Inc. brought together nine experienced authors to write 12 chapters on many
aspects and applications of multicore programming with the Propeller chip. This book
begins with an introduction to the Propeller chip’s architecture and Spin programming
language, debugging techniques, and sensor interfacing. Then, the remainder of the
book introduces eight diverse and powerful applications, ending with a speech syn-
thesis demonstration written by the Propeller chip’s inventor, Chip Gracey. We hope
you find this book to be informative and inspirational. For more Propeller-related
resources, visit www.parallax.com/propeller, and to join in the conversation with the
Propeller community, visit forums.parallax.com.

ADDITIONAL RESOURCES FOR THIS BOOK

The software, documentation, example code, and other resources cited in the follow-
ing chapters are available for free download from PCMProp directory at ftp:/ftp.
propeller-chip.com.

About the Example Code Code listings for projects in this text come from
diverse sources. The Propeller chip’s native languages are object-based, and many
prewritten objects are included with the Propeller Tool programming software or are
posted to the public Propeller Object Exchange at obex.parallax.com.

Copyright for Example Code All Spin and Propeller Assembly code listings
included in this book, including those sourced from the Propeller Object Exchange,
are covered by the MIT Copyright license, which appears below.

Copyright © <year> <copyright holders>
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”) to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

xvii

www.parallax.com/propeller

Xviii INTRODUCTION

THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. INNO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT, OR
OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

SPECIAL CONTRIBUTORS

Parallax Inc. would like to thank their team members: Chip Gracey for inventing the
amazing Propeller chip; Ken Gracey for envisioning this book; Joel “Bump” Jacobs
for creating the original cartoons in Chapters 1 and 2; Rich Allred for the majority of
the illustrations in Chapters 1 through 5; Jeff Martin, Andy Lindsay, and Chip Gracey
for authoring their chapters; and Stephanie Lindsay for coordinating production with
McGraw-Hill. Parallax also thanks André LaMothe for authoring his chapter and for
heading up the team of authors from the Propeller community: Martin Hebel, Hanno
Sander, Shane Avery, Joshua Hintze, and Vern Graner. Special thanks go to Jon Titus
for so generously providing the Foreword, and to Judy Bass at McGraw-Hill for find-
ing this project worthwhile and making it happen.

THE PROPELLER CHIP MULTICORE

MICROCONTROLLER

Jeff Martin

Introduction

In the 1990s, the term “multicore” had more to do with soldering equipment than it did
with computer processors. Though the concept was young and relatively nameless, this
was the time many silicon engineers began focusing their efforts on multiprocessor tech-
nology. By the middle of the following decade, “multicore” had become the industry
buzzword and the first consumer-accessible products arrived on the market. The short
years to follow would mark a time of extreme evolution, innovation, and adoption of
multicore technology that is bound to continue at a fast pace.

So what exactly is multicore and why is it so important? These are just two of the
many questions we’ll answer throughout this book, with insightful examples and excit-
ing projects you can build yourself. We’ll reveal how this technology is changing the
way problems are solved and systems are designed. Most importantly, we’ll show just
how accessible multicore technology is to you.

Caution: This book is a collaboration of many enthusiastic authors who are
eager to demonstrate incredible possibilities well within your reach. Reading this
material may leave you feeling inspired, exhilarated, and empowered to invent
new products and explore new ideas; prepare yourself!

In this chapter, we’ll do the following:
B Learn what multicore means and why it’s important

B Introduce the multicore Propeller™ microcontroller
B Explore Propeller hardware we’ll use throughout this book

2 THE PROPELLER CHIP MULTICORE MICROCONTROLLER

Multicore Defined

A multicore processor is a system composed of two or more independent CPUs, usually
in the same die, that achieves multiprocessing in a single physical package (see Fig. 1-1).
Put simply, a multicore chip can do many things simultaneously!

MULTIPROCESSING VERSUS MULTITASKING

Are you thinking “multitasking”? For computers, multitasking is a method of shar-
ing a single CPU for multiple, possibly unrelated tasks. A single-core device that
is multitasking fast enough gives the illusion of things happening at once.

A multicore device, however, achieves true multiprocessing: performing multiple
tasks simultaneously. In comparison, a multicore device can run at a slower speed, con-
sume less power, and achieve better results than a fast-running single-core device can.

In this book we will usually refer to “tasks,” “functions,” and “processes” in the
context of multiprocessing, rather than multitasking.

It may seem quite daunting to get multiple processors all working together in a single,
coherent application. In fact, once upon a time the task was notably treacherous since
it was unclear exactly how to apply multicore technology. Many complex systems
were devised that either stripped developers of power or burdened them with unruly
multithread obstacles.

Eight individual processors
on same silicon die.

) A ROM and RAM memory
shared by all processors.

Figure 1-1 Close-up of multicore Propeller chip silicon.

MULTICORE PROPELLER MICROCONTROLLER 3

Lucky for us, technique and technology have evolved to give us devices like the
Propeller microcontroller. It is now quite natural to create multicore applications. After
reading this book, you may find yourself wondering how you ever got along without it!

Why Multicore?

Why is multicore so important? After all, thousands of applications have been built
using single-core devices.

While that’s true, despite the successes, there have always been two obstacles imped-
ing progress: asynchronous events and task fidelity.

B Asynchronous events are things that occur when you least expect them. They are
inherently hard to handle in a timely manner with a single-core device.

B Task fidelity is the level of attention given to an activity. The lower the fidelity, the
lower the precision with which the task is carried out.

These are two opposing entities, each vying for the precious time of a single pro-
cessor. As asynchronous events increase, the fidelity of existing tasks suffers. As the
demand for task fidelity increases, fewer asynchronous events are handled.

With a single-core device, balancing these two competing demands often means
requiring processor interrupts and specialized hardware. Processor interrupts allow
asynchronous events to be addressed while specialized hardware remains focused on
high-fidelity tasks.

But is that the best solution? It means the “brains” of an application must rely on other
hardware for high-speed tasks and relegate itself to lower-priority tasks while waiting
for the interrupt of asynchronous events. It means systems become more expensive
and complex to build, often with multiple chips to support the demands. It also means
designers have the difficult challenge of finding the right “special” hardware for the
job, learning that hardware, and dealing with any limitations it imposes, all in addition
to programming the brains of the application in the first place!

Perhaps the best solution is most apparent in our everyday lives. How many times in
your life have you wished there were two of you? Or three or more? Ever needed to “finish
that report,” “make that call,” and “do those chores” while being pressed for quality time
with your spouse, friends, kids, or your hobbies? (See Fig. 1-2.)

Wouldn’t it be great, even for a short time, if you could do multiple things at once com-
pletely without distraction or loss of speed? Maybe we cannot, but a multicore device can!

Multicore Propeller Microcontroller

The Propeller microcontroller realizes this dream in its ability to clone its “mind” into
two, three, or even eight individual processors, each working simultaneously with no
distractions. Moreover, it can do this on a temporary or permanent basis with each

4

THE PROPELLER CHIP MULTICORE MICROCONTROLLER

Figure 1-2 Clones can multiprocess!

processor sleeping until needed, consuming almost no power, yet waking in less than
10 millionths of a second to handle events.

CLEAR YOUR MIND OF INTERRUPTIONS

If you know all about interrupts on single-core devices, forget it now! Interrupts
can be troublesome for real-time applications and are nonexistent in the multicore
Propeller. Why? With a device like the Propeller, you don’t need them. Just focus a
processor on a task that needs such handling; it can sleep until the needed moment
arrives and won’t negatively affect the rest of the application’s efforts.

The multicore Propeller is a system of homogenous processors and general-purpose
I/O pins. Learn to use one processor and you know how to use them all. There’s no
specialized hardware to learn for demanding tasks; just assign another processor to the
job. This incredibly useful hardware has inspired many who may otherwise have not
considered multicore technology for an embedded system application.

Tip: Since its inception, multicore technology has continued to evolve to give
us many kinds of devices, tools, and schemes. A quick review of “multicore” on
Wikipedia (www.wikipedia.org) reveals the many ways the term is applied to a
variety of unique hardware designs. We will focus on a solid foundation built with
simple rules and proven results. These concepts can help you regardless of the
multicore platform you use.

www.wikipedia.org

MULTICORE PROPELLER MICROCONTROLLER 5

CONCEPT

Demanding jobs require a highly skilled team of workers, a fine-tuned force that per-
forms in harmony aiming for a single goal. The multicore Propeller wraps this team
of processors into one tiny package. These processors, called cogs, are at your service
waiting to be called upon as the need arises. Both powerful and flexible, they lie dormant
until needed, sleep and wake on a moment’s notice, or run continuously.

The flat memory architecture, homogenous processor design, and built-in languages
make for a simple architecture that is easy to learn.

Use in Practice Here’s how you’d use the multicore Propeller microcontroller in
an application.

B Build a Propeller Application out of objects (see Fig. 1-3).

Tip: Objects are sets of code and data that are self-contained and have a specific
purpose. Many objects already exist for various tasks; you can choose from those
and can also create new ones.

B Compile the Propeller Application and download it to the Propeller’s RAM or
EEPROM (see Fig. 1-4).

B After download, the Propeller starts a cog to execute the application from Main
RAM, as in Fig. 1-5.

B The application may run entirely using only one cog or may choose to launch additional
cogs to process a subset of code in parallel, as in Fig. 1-6. Of course, this performs as
explicitly designed into each specialized object by you and other developers.

— Graphics_Demo Object =

When the top object is compiled,

all the objects referenced by it are
included in the downloadable

image, called a Propeller Application.

Spin Code

—_—
—_—
—_—
—_—
—_———
—_—

—_———
—_—_—

Each object has a specific talent that it
performs when called upon by the
object that references it. Additional
cogs may be started to assist with the
performance, if necessary, as designed.

TV Object

Spin Code

—_—
Propeller Assembly Code

_—
——
—_—

— Graphics Object =

Spin Code

B
Propeller Assembly Code

_—
——
—_—

—_—

—— Mouse ObjeCt

Spin Code

—_—

Propeller Assembly Code

—_—
—_—
—_———
—_—
e ——

Figure 1-3 A Propeller application’s object hierarchy.

6 THE PROPELLER CHIP MULTICORE MICROCONTROLLER

An application is
downloaded to

the Propeller's
RAM, and
optionally, its
external EEPROM.

' RAM-only downloads

Cog 1

Cog 0 [RAM|
RAM
Cog 2 [RAM |

VR
Propeller Application

are useful during
development since
they take less time.
EEPROM downloads
are necessary if the
application should be
retained between
resets or power cycles.

Download Main RAM

' L}
' L}
' L
' L
' L}
el = e~
OR B
J— J— ol el el el .
. el 1ol el (e
'
' L
' L
' L
'
'

ed
at Boot Up

External EEPROM
32 K bytes

Figure 1-4 Downloading to the Propeller.

Tip: If the application was downloaded to EEPROM, it will also start in the same
way whenever a power-up or reset event occurs.

Propeller applications may use multiple cogs all the time or just sometimes, as the
need requires. Cogs may also be activated and then put to sleep (consuming very little
power) so they may wake up instantly when needed.

Tip: The next chapter will take you step-by-step through hardware connections
and an example development process.

MULTICORE PROPELLER MICROCONTROLLER 7

Upon application launch, a single cog
runs the ROM-based Spin Interpreter
and executes the application from
Main RAM. From there, the
application can launch additional cogs
on Spin or Assembly code, as needed.

Cog2 [RAM]
Cog 7 [RAM]

Interpreter

Main RAM
A

/'\f\
~
. (Application’\g
:)

Here, the application launches an
additional cog to execute a subset of
the application’s Spin code in parallel.

It may also launch a cog to run
assembly code (not shown).

Main RAM

LA
Y “)

Figure 1-6 Additional cog launched on Spin code.

C
U

PROPELLER HARDWARE

We’ll briefly discuss the Propeller chip’s hardware and how it works in the rest of this
chapter, and then you’ll be introduced to multicore programming and debugging in the
following two chapters. What you learn here will be put to good use in the exciting
projects filling the remainder of this book.

Packages The Propeller chip itself is available in the three package types shown in
Fig. 1-7.

8 THE PROPELLER CHIP MULTICORE MICROCONTROLLER

| 52.5 mm | 40-pin DIP package for

/ prototyping.

»
=1

= PAALAXZ
P8X32A-D40
AYWWXZZ

wuw 7

|t

Pin 1

44-pin LQFP and QFN
packages for surface mount
production.

g™

*Tmo™

Figure 1-7 Propeller chip’s packages.

Pin Descriptions and Specifications Each package features the same set of pins,
with the exception that the surface mount packages (LQFP and QFN) have four extra
power pins (see Fig. 1-8 and Table 1-1). All functional attributes are identical regardless
of package (see Table 1-2).

Architecture Physically, the Propeller is organized as shown in Fig. 1-1, but func-
tionally, it is like that shown in Fig. 1-9.

GO 1 Y 40| AIARAAIAS
G 2 39 [-CPaD) e el 11 R
G 3 38 P2
4 37
CPa) 5 36 -CP2D) - 93?%33%%5%3%33 -
5) 6 35 <(P26) (P4 (P26)
D= 2 pARauAXz [
Crio 8 33 5od (@ /NT 3 (D)
S PlireR oo da<o
@oED{ 102 3 T 31 HD

® (BoED 6 28
FED 12X POCD Gy 1y 2 -G
G 12R 8 2 29
G > sl B0 PBX32A L
o g DAL G0 Aywwxzz =~ [CGED

INI
15 26 [-CP21) P10 11 23 (P20
16 25 —CP20D Nogreer22ggy
G- 17 24 | -CPTD)
P13 18 23 P18 A

R 1 0 el | 5 | el () O ||IN~||0

et v @

Figure 1-8 Propeller chip’s pin designators.

MULTICORE PROPELLER MICROCONTROLLER 9

TABLE 1-1 PIN DESCRIPTIONS

PIN NAME DIRECTION DESCRIPTION

PO — P31 I/0 General-purpose 1/0O Port A. Can source/sink 40 mA each at
3.3 VDC. Logic threshold is = %2 VDD; 1.65 VDC @ 3.3 VDC

Pins P28 — P31 are special purpose upon power-up/reset but
are general purpose I/O afterwards. P28/P29 are 12C SCL/SDA
to external EEPROM. P30/P31 are serial Tx/Rx to host.

VDD 3.3-volts DC (2.7 — 3.3 VDC)
VSS Ground.
BOEN | Brown Out Enable (active low). Must connect to VDD or VSS.

If low, RESn outputs VDD (through 5 KQ) for monitoring; drive
low to reset. If high, RESn is CMOS input with Schmitt Trigger.

RESn I/0 Reset (active low). Low causes reset: all cogs disabled and 1/0
floating. Propeller restarts 50 ms after RESn transitions high.

Xl | Crystal Input. Connect to crystal/oscillator pack output (XO left
disconnected) or to one leg of crystal/resonator with X0 con-
nected to the other, depending on CLK register settings. No
external resistors or capacitors are required.

X0 (0] Crystal Output. Feedback for an external crystal. May leave
disconnected depending on CLK register settings. No external
resistors or capacitors are required.

|
TABLE 1-2 SPECIFICATIONS

ATTRIBUTE DESCRIPTION

Model P8X32A

Power Requirements 3.3 volts DC (max current draw must be < 300 mA)

External Clock Speed DC to 80 MHz (4 MHz to 8 MHz with Clock PLL running)

System Clock Speed DC to 80 MHz

Internal RC Oscillator 12 MHz or 20 kHz (may range from 8 MHz — 20 MHz or 13 kHz
— 33 kHz, respectively)

Main RAM/ROM 64 KB: 32 KB RAM + 32 KB ROM

Cog RAM 512 x 32 bits each

RAM/ROM Organization Long (32-bit), Word (16-bit), or Byte (8-bit) addressable

1/0 pins 32 CMOS signals with VDD/2 input threshold

Current Source/Sink per I/O0 40 mA

Current Draw @ 3.3 VDC, 500 pA per MIPS (MIPS = Freq (MHz) / 4 * Active Cogs)

70 °F

o}

Cog 0 Cog 1 Cog 2 Cog 3 Cog 4 Cog 5 Cog 6 Cog 7

ﬁ > I ™ r Y T Y T Y r ™~ r ™~ |ﬂ> Pin Directions
)) -/) -/ -/ Pin Outputs

44

3243

CCCOONE

s [z [[z s [z [z |z
= B EIE = | == B =11 =1 B 64 | B2 S22 2112 [2l = B = S|2 el 2]zl =1 | =11 B 64| B S|(22)12]| 2l Il
HIRIEIEIE HIRIHEIEIE HIRIEIEIE aflefl=|z|| & HIRIEIEIE HIRIEIEIE HIRIEIEIE HIRIEIE S
|+l g||2]|= |+l g|| &]|z |+l g]|&]|z ||l g]|&]| |+l g||2]|= |+l g]|&]|z |+l g]|&]| =1l g||]| =
MNIBIHIEIS <|la]| S| <|l=]|SI{Z|] MNIEBEIHIEIB <||=]|S|Z] = <|l=]|SI{%] <|la|| SI{Z|] MNIEIHIEIB ®
HIBIEIEIE HIEIEEIE HIHIEIHEIE HIBIEEIE HIBICIEIE] HIHIEIHEIE HIBEIKIBIE HIBIEEIE &
I B M (E B HEIRIEIE HIEIHIEE I E B HEIRIEIE HEIHEE HEIEE CEz)e>] Pins
s([=]]8]13]] 2 2(12[18]|3]] 2(12[18||3]] 22| 8|3]|£ o[z]18]]3]]| & aof[z]18(3]] 2 212l 2||3]] 2 2||z|18]|3]| &
8118]|S e RIS e HIEIS o 81132 o 8118]|s e HIEIS o 8113|[2 o 818]|S S
2||< 9llo HIEIEISEIE HIEIEINIE HIEIEIEIE 2||< Qllo HIEIEINIE HIEIEINIE <||2 2llo]
offe = ofle = olle = olle = offe = ofle = olle = olle =
512X 32 512 X 32 512X 32 512 X 32 512 X 32 512 X 32 512 X 32 512 X 32
RAM t RAM RAM RAM RAM RAM RAM RAM
Processor Processor Processor Processor Processor Processor Processor Processor
32
3 Pin Inputs v
3 System Counter
Y
A 32 A A y A A y A Data Bus
A 16, A A 4 A A y A A Address Bus
Power Up H System
Detector A ub 3 CLock Counter
ORRIERR R ~
& g T e Reset Delay RESET
s
YT I Brown Out
I2939385883
1 33 Detector CLKSEL 8192 X 32 RAM
=3 B vz 2CD
Z=) z 3
. P Ll-_/‘]/\n 31 HCZ
8192 X 32 ROM
4 30 RC Oscillator 3
5 29 SOFTRES 12 MHz / 20 KHz
6 28 5 Clock CLOCK Cog Enables
7 27 Selector
Vo) & 26 |-CP2s (MUX)
Lock Bits (8)
o P8X32A-Q44 PLLENA — Clock PLL
10 AYWWXZZ 2 4x,8X, 16x
P10) 11 23 (16x must be SOFTRES
Nosooerwoo T
Yeyeer22gEy Crystal 64 - 128 MHz) PLLENA
Oscillator Configuration
NRRRRRRRAR DC - 80 MHz OSCENA 2 Register
e[l el OSCENA —M (4.8 MHz OSCMODE
S o || 2 3,
OSCMODE 54 with Clock PLL) CLKSEL

Hub and cog interaction

Figure 1-9 Propeller block diagram.

MULTICORE PROPELLER MICROCONTROLLER 11

The cogs (processors) are all alike and work together as a team, sharing access to all
system hardware, main memory, System Counter, configuration registers, I/O pins, etc.
Let’s look closely at some notable components shown in Fig. 1-9.

Cogs (processors) The Propeller contains eight processors, called cogs, numbered
0 to 7. Each cog contains the same components and can run tasks independent of the
others. All use the same clock source so they each maintain the same time reference
and all active cogs execute instructions simultaneously.

Tip: Propeller processors are called cogs because they are simple and uniform,
like the cogs on gears that mesh with others of their kind to induce change. Their
simplicity assures reliability and their collective delivers powerful results.

Cogs start and stop at runtime to perform independent or cooperative tasks simul-
taneously. As the developer, you have full control over how and when each cog is
employed; there is no compiler-driven or operating system—based splitting of tasks
between multiple cogs. This explicit parallelism empowers you to deliver deterministic
timing, power consumption, and response to the embedded application.

Each cog has its own RAM, called Cog RAM, containing 512 registers of 32 bits
each. Cog RAM is used for both code and data, except for the last 16 special-purpose
registers (see Table 1-3) that provide an interface to the System Counter, I/O pins, and
local cog peripherals.

TABLE 1-3 COG RAM SPECIAL-PURPOSE REGISTERS

ADDRESS NAME TYPE DESCRIPTION

$1F0 PAR Read-Only Boot Parameter

$1F1 CNT Read-Only System Counter

$1F2 INA Read-Only Input States for P31-P0
$1F3 INB Read-Only <reserved>

$1F4 OUTA Read/Write Output States for P3-P0
$1F5 OuUTB Read/Write <reserved>

$1F6 DIRA Read/Write Direction States for P31-P0
$1F7 DIRB Read/Write <reserved>

$1F8 CTRA Read/Write Counter A Control

$1F9 CTRB Read/Write Counter B Control

$1FA FRQA Read/Write Counter A Frequency
$1FB FRQB Read/Write Counter B Frequency
$1FC PHSA Read/Write Counter A Phase

$1FD PHSB Read/Write Counter B Phase

$1FE VCFG Read/Write Video Configuration
$1FF VSCL Read/Write Video Scale

12

THE PROPELLER CHIP MULTICORE MICROCONTROLLER

When a cog is started, registers 0 ($000) through 495 ($1EF) are loaded sequentially
from Main RAM/ROM, its special-purpose registers are cleared to zero, and it begins
executing instructions starting at Cog RAM register 0. It continues to execute code until
it is stopped or rebooted by either itself or another cog, or a reset occurs.

Hub The Hub maintains system integrity by ensuring that mutually exclusive resources
are accessed by only one cog at a time. Mutually exclusive resources include things like
Main RAM/ROM and configuration registers.

The Hub gives each cog access to such resources once every 16 clock cycles in a
round-robin fashion, from Cog 0 through Cog 7 and back to Cog 0 again. If a cog tries
to access a mutually exclusive resource out of order, it will simply wait until its next
hub access window arrives. Since most processing occurs internally in each of the cogs,
this potential for delay is not too frequent.

Information: The Hub is our friend. It prevents shared memory from being
clobbered by multiple cogs attempting simultaneous access, which would lead
to catastrophic failure. In Chap. 3, you will see examples of how the Propeller’s
programming languages allow the developer to coordinate read/write timing
among multiple cogs. Search for “Hub” in the Propeller Manual or Propeller Tool
Help (www.parallax.com) to find out more about the Hub.

Memory There are three distinct blocks of memory inside the Propeller chip.

B Main RAM (32 K bytes; 8 K longs)
B Main ROM (32 K bytes; 8 K longs)
B Cog RAM (512 longs x 8 cogs)

Both Main RAM and Main ROM are shared (mutually exclusively) by all cogs, each able
to access any part of those two blocks in turn. Main RAM is where the Propeller Application
resides (code and data); Main ROM contains support data and functions (see Fig. 1-10).
Every location is accessible as a byte (8 bits), word (2 bytes), or long (2 words).

Cog RAM is located inside a cog itself (see Fig. 1-11). Cog RAM is for exclusive
use by the cog that contains it. Every register in Cog RAM is accessible only as a long
(32 bits, 2 words, 4 bytes).

I/0 Pins One of the beauties of the Propeller lies within its I/O pin architecture.
While the Propeller chip’s 32 I/O pins are shared among all cogs, they are not a mutu-
ally exclusive resource. Any cog can access any I/O pins at any time—no need to wait
for a hub access window! The cogs achieve this by gating their individual I/O signals
through a set of AND and OR gates, as seen at the top of each cog in Fig. 1-9.

The cog collective affects the 1/O pins as described by these simple rules:

H A pin is an output only if an active cog sets it to an output.
H A pin outputs high only if the aforementioned cog sets it high.

www.parallax.com

MULTICORE PROPELLER MICROCONTROLLER

$0000
I
I
I
I
I
I
I
I
I

$7FFF

$8000
|
I
I

$BFFF
$C000 — $CFFF
$D000 — $DFFF
$E000 — $FO001
$F002 — $FFFF

Propeller Application
Code and Data
(8192 Longs)

Character Set
(4096 Longs,
256 Characters of
16 x 32 pixels)

Log Table (2048 words)

Anti-log Table (2048 words)

Sine Table (2049 words)

Boot Loader & Interpreter

I\

J

RAM
(8192 longs)

ROM
(8192 longs)

13

Figure 1-10

Propeller Main RAM/ROM.

General-Purpose
- Registers
(32 bits each)

Special-Purpose
- Registers
(32 bits each)

J

$000
|
I
I
I
|
! Propeller
| | Assembly Code
| and Data
I (496 Longs)
I
I
|
I
1
SIEF
$IFO
I System
I Variables
! (16 Longs)
SIFF
Figure 1-11

Propeller Cog RAM.

When executing a well-behaved application, the team of cogs has flexible control
over the I/O pins without causing conflicts between them. A pin is an input unless a cog
makes it an output and an output pin is low unless a cog sets it high.

Tip: An active cog is one that is executing instructions or sleeping. An inactive

cog is one that is completely shut down. Only active cogs influence the direction

and state of 1/O pins.

System Counter The System Counter is the Propeller chip’s time-base. It’s a global,
read-only, 32-bit counter that increments once every System Clock cycle. Cogs read

14

THE PROPELLER CHIP MULTICORE MICROCONTROLLER

the System Counter via their CNT register to perform timing calculations and accurate
delays. The System Counter is not a mutually exclusive resource; every cog can read
it simultaneously.

Information: We use the System Counter in nearly every exercise in the next
chapter.

Counter Modules and Video Generators These are some of the Propeller’s secret
weapons. Each cog contains two counter modules and one video generator. They are simple
state-machines that perform operations in parallel with the cogs that contain them.

Using its video generator, a cog can display graphics and text on a TV or computer
monitor display. Using its counter modules, possibly in concert with software objects, a
cog can perform functions that might require dedicated hardware in other systems, such
as measuring pulses, frequency, duty cycle, or signal decay, or performing delta-sigma
A/D and duty-modulated D/A conversion.

Information: We put these powerful state-machines to good use in later
chapters.

Summary

We learned what multicore is about and why it’s important. We also explored our
multicore hardware in preparation for the journey ahead. The next chapter will apply
this hardware a step at a time while teaching simple problem-solving and multicore
programming techniques.

Exercises

To further your learning experience, we recommend trying the following exercises on
your own:

1 Carefully consider opportunities for multicore devices. How could a self-propelled
robot be enhanced using multicore? What if it had multiple legs and arms?

2 Think about ways humans exhibit multicore traits. Yes, we have only one “mind,”
but what keeps our heart beating and our lungs pumping while we are busy think-
ing about this? What about “learned” reflexes? Keep this in mind when applying
multicore hardware to future applications.

INTRODUCTION TO PROPELLER

PROGRAMMING

Jeff Martin

Introduction

The most reliable systems are built using simple, proven concepts and elemental rules as
building blocks. In truth, those basic principles are valuable for solving many everyday
problems, leading to solid and dependable results. Together, we’ll apply those principles
in step-by-step fashion as we learn to program the multicore Propeller in the following
exercises.

You’ll be running a Propeller application in no time, and writing your own in mere
minutes! You’ll learn that you can achieve quick results, perform time-sensitive tasks,
and use objects and multiple processors to build amazing projects in little time! In addi-
tion, you’ll know where to find an ever-growing collection of documentation, examples,
and free, open-source objects that an entire community of developers is eager to share
with you!

In this chapter, we’ll do the following:

Cover the available forms of the Propeller

Install the development software and connect our Propeller
Explore the Spin language with simple, single-core examples
Run our examples on a Propeller in RAM and EEPROM
Create a simple multicore example

Make a building block object

Adjust timing and stack size

Find out where to learn more

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_02.

15

16

INTRODUCTION TO PROPELLER PROGRAMMING

What’s the Secret?

How can you build incredible, multicore systems without getting lost in the details?
Surprisingly, there’s no real secret. In fact, teachers have been drilling the solution into
our heads for years.

Solution: Break big problems into smaller, simpler ones and solve them
individually. Then put the individual solutions together to tackle the original
problem (see Fig. 2-1).

That’s it! For applications dealing with many things at once, often a separate, focused
process (core) can address each task individually, and the collective of separate processes
can achieve amazing things with little work on the developer’s part. It’s easier than you
may think. If you start every application with this in mind, you’ll be most successful.

Let’s test this out with an example. Suppose you have an assembly line that produces
thousands of products per minute. The machinery to do it is expensive, so both quantity
and quality must be high to keep the business profitable. You need a system that inspects
the product at various critical stages, discarding the bad, keeping the good, and adjusting
the speed of assembly along the way to maximize throughput. The workers and managers
can’t be left out of the loop; they need reports of some kind and the ability to adjust
settings as the need arises. And, most importantly, each of these things should behave
consistently without any bottlenecks introduced by the activities of another.

LET’S GET CONNECTED! 17

This may sound horribly complex, but breaking it down into separate problems eases
the pain:

B First, concentrate on a system that only inspects the product and gives a pass or fail
response to each one.

B Then, devise a process for discarding units deemed bad while keeping the good.

B Build a component whose sole task is to adjust assembly line speed based on a ratio
of good versus bad product produced.

B Create a system to display production status.

B Finally, build a feature that takes human input to change operating parameters.

The task is much easier now. Solve each of these five smaller problems, one at a time,
with little or no regard for the others. Each can be a specialized process that focuses
most of its energy on the given task.

A multicore device like the Propeller can then perform all of these specialized func-
tions in separate processors, each faithfully fulfilling its “simple” duty despite the com-
plexities and timing requirements of the other functions running concurrently. The final
system, completely controlled by a single Propeller chip, may use a camera for visual
product inspection, solenoids to kick bad units off the assembly line, actuators to adjust
the speed, one or more Video Graphics Array (VGA) displays to show system status,
and one or more keyboards for user input. All equipment is standard, inexpensive, and
readily available.

Ready to Dive In?

As you follow this chapter’s exercises, keep in mind that every function we have the
Propeller perform for us is just an “example process.” We will use simple example
processes, like blinking light-emitting diodes (LEDs), to demonstrate an application
while focusing on the concepts of Propeller programming.

In place of each example, we could use audio, video, analog-to-digital, or any number
of other possible processes, but they would obscure the point. The point is that the
concepts in this short chapter serve as building blocks for many types of “processes,”
from simple to sophisticated, from single-core to multicore.

The rest of this book will show you fantastic examples of those capabilities, taking
full advantage of what the multicore Propeller has to offer. The foundation we build in
this chapter will provide you with a strong understanding of the things to come.

Let’s Get Connected!

Let’s get started by connecting the Propeller and testing it out! You can get a Propeller
chip in many different forms to suit your needs (see Fig. 2-2).

18 INTRODUCTION TO PROPELLER PROGRAMMING

Need instant gratification? Want to wire it yourself?
The Propeller Demo Board is for you. Use a DIP package or PropStick USB.

Building a permanent
application?

Fabricate custom boards
with LQFP or QFN packages,
or try the Proto Boards.

Figure 2-2 Propeller chip in different forms.

Tip: Check out www.parallax.com/propeller for current product offerings.

For demonstration purposes and ease-of-use, we’ll focus on the Propeller Demo
Board in this chapter’s exercises. Don’t worry—the other products can also perform the
same, simple examples we show here with the addition of some simple circuitry.

SOFTWARE: PROPELLER TOOL—INSTALL THIS FIRST

Now that we’ve selected a Propeller product, to develop applications for it, we first
need to install the Propeller Tool software and connect the Propeller to a computer and
power supply.

v Download and install the Propeller Tool software.
o The Propeller Tool software is available free from Parallax Inc. Go to www.
parallax.com/Propeller and select the Downloads link.
o Install with the default options. The software will automatically load the Windows
Universal Serial Bus (USB) drivers needed for the next steps.
v Start the Propeller Tool software.
o When installation is complete, start the software by double-clicking the Propeller
Tool icon on your desktop, or follow the Start — Programs — Parallax Inc. menu
item. A window should appear similar to Fig. 2-3.

www.parallax.com/propeller
www.parallax.com/Propeller
www.parallax.com/Propeller

LET’S GET CONNECTED!

19

Object View—shows application structure.

 Propallar Tool
Fic Edt Run Help

J;;I |P|ope!e| Libeary - Demaz

=) Paralkex Inc

=3 Franpies
F-C3 Help
i Libeary
15 PE Kt
=y Heln
£

=13 Mopeller Toal v1.26

2

Axd keypad Readar DEMO, 2pin
ALEBHIE DEMU. span
COIL_demo.spin

Desdag_| el Tesl sgin
dither.zpin

Flaat_Dismnc.spin
I'tequencyliynth spn

<

| Propeller Source 1" 5ol

101 Irigest

=

Uriilleadt |

i Full Source

=116

" Londensed 7 Summary I Documentaban

x|

-

Folder and File views—provides
access to objects on the computer.

Figure 2-3

Edit pane—where you enter your code.

Propeller Tool software (Windows).

Tip: In addition to being a code editor, the Propeller Tool is a launch point for a
wealth of Propeller information. The Help menu includes not only Propeller Help,

but the manual, datasheet, schematics, and educational labs as well.

Tip: Linux and Mac software (Fig. 2-4) is also available but may not include the
USB drivers for your system. See instructions with the software to install USB
drivers before connecting hardware.

HARDWARE: PROPELLER DEMO BOARD—CONNECT
THIS SECOND

v Connect a standard USB cable (A to mini B type cable).
o Insert the cable’s “A” connector into an available USB port on your computer
and the “mini B” connector to the Propeller Demo Board’s USB jack as shown

in Fig. 2-5. The computer will indicate that it found new hardware and should
automatically configure itself since we installed the USB drivers in the previous

step.

v Connect a power supply (6-9 VDC wall-pack with center-positive, 2.1-mm plug).

o Insert the power supply’s plug into the jack next to the power switch.
v Turn on the power.

o Slide the power switch to the ON position and verify that the power light, located
near the switch, illuminates.

20 INTRODUCTION TO PROPELLER PROGRAMMING

Edit pane—where you enter your code.

A BST = Byt Sipin Tuol
wleariE H:' {rnied1 |

bEapparanang
»EDeveioper
i neary

EiNatwork
bEsystem
i i mevalumasatringss ninee
piiuser Guioes Ana Informan
wBSisers

AcirpsaERnkeT SN
Agkires sBSRKENCORIroL Soin
AcreLEInKerC antralmEnOnE o< sl
AktrpcsRAnkerMhOASEIS pin
HINKE 10in

BeTinlite spin

wiman spin

Bt anAATEINK £0in

Bt ongAnk soin
LOpUBRCIETamEn: wn
DhtpilaFuchbafions oin
LB AL KATDIE SEIN
EnlerAnADININNV AP tin
HOESINO] 5L Smn
FUlI L B BAFIUL D0
Helof WiDuDhex Senal 5o
MUSTPLOQUDRITEY SO SR
FackLentthDemoM pded spin
18N B0 008 S0M
TetminaLEOC snired Spin
TERESLIOLIEDREC 0N
TEUIM e a0 S0

ThOTDC. s
Sy ne— Or
|LEL L3 Untitied1 spin

Folder and File views—provides
access to objects on the computer.

Figure 2-4 Brad’s Spin Tool (BST) on a Macintosh.

Figure 2-5 Propeller Demo Board connected and powered.

LET’S GET CONNECTED! 21

PROP PLUG USB INTERFACE TOOL FOR CUSTOM
PROPELLER BOARDS

Many Propeller boards feature a USB interface. If you are not using the Propeller
Demo Board, see the product’s documentation for connection details.

For discrete Propeller chips, Fig. 2-6 shows the connection using the Propeller
Plug (available from www.parallax.com). Refer to the chip’s pin names if translat-
ing from the DIP to the LQFP or QFN packages.

Propeller Clip or Plug

GND
— . ReT <> ToPC
—e »Rx
P8X32A-D40
Rx ¢
PO 1 ~ a0pp3r XL 33V
P12 39fpao —X> | 10 kQ 2:2¥
P23 38 f p2g —SDA M
P3[4 37hpPog —SCL
p4gs 36 p P27 24LC256
P50 6 35 [1P26
el upre a2 Thwe—
s 33 P24 Crystal
Vvss]9 32h VDD—m— A203 6 1 SCL—
3.3V ¢——BOEn[10 2T y 31[Xx0 vss4 5[0 SDA
—Resnf{ 11 £ i 30px Z. — DIP-8 —
——voDj12 R 2 290VSs Vss Vas
Paf13s »E 28pras
— PoQ 14 O 27 pP22
= P100 15 o 26 0P21
Vss P11 16 25 [0 P20
P12 17 24 1 P19
P13 18 23 QP18
P14 19 22 P17
P15 20 21 b P16
DIP-40

Figure 2-6 Propeller DIP to Prop Plug connections.

If you don’t have a Propeller Plug or USB port, look for “Hardware Connections”
in Propeller Tool Help for an example connection to an RS-232 serial port.

Now test the connection.

v Perform the Propeller Identification process.
o Press the F7 key or select the Run — Identify Hardware. . . menu item. The
Propeller Tool will scan for the Propeller and display results similar to
Fig. 2-7.

www.parallax.com

22 INTRODUCTION TO PROPELLER PROGRAMMING

Information E|

\il) Propeller chip wersion 1 Found on COM4,

Figure 2-7 Identification dialog showing version
and port of Propeller chip.

Tip: If the software was unable to find the Propeller chip, check all cable connections
and the power switch/light, then try the identification process again. You may also verify
the USB connection and driver using the Serial Port Search List; select the Edit —
Preferences menu item, choose the Operation tab, click the Edit Ports button, then
connect/disconnect the USB cable while watching the Serial Port Search List window.
When working properly, your Propeller connection will appear as a “USB Serial Port.”

Your First Propeller Application

Now that we can talk to the Propeller, let’s write a short program to test it. We’ll start
our exercises slow and easy and accelerate into more advanced topics as we build up
our knowledge.

v Type the following code into the blank edit pane of the Propeller Tool software.
o Make sure the PUB line begins at the leftmost edge of the edit pane. Note that the
case of letters (uppercase/lowercase) does not matter but indention often does;
we indented the lines under PUB LED_On by two spaces.

PUB LED On
dira[16] :=1
outal[16] := 1
repeat

Tip: This source is from: PCMProp/Chapter_02/Source/LED_On.spin.

When done, your screen should look something like Fig. 2-8.

v Now compile the code by pressing the F9 key, or by selecting the Run — Compile
Current — Update Status menu item.
o If everything is correct, “Compilation Successful” should appear briefly on the
status bar. If you entered something incorrectly, an error message will appear
indicating the problem; recheck your work and compile again.

YOUR FIRST PROPELLER APPLICATION 23

@ Propeller Tool

File Edit Run Help
Untited® |
i Full Saurce " Condensed (* Summary " Dacumentation |
PUB LED On &
dira[1F] == 1
outal16] == 1
repeat
T}, IF‘ropeIIer Library - Dermos j
¢ EHE Parallas Inc -~
) Propeller Toal v1.26
=) Examples
wo)
0 | £
44 keypad Reader DEMO. zpin ~
ADE803_DEMO.spin]
COIL_demo. zpin
[ebug_Led_Test. zpin
dither. zpin
Float_Dema. spin
FrequencySurith,. zpin » D
£ i . | 2 el
IPropeIIerSource [*.5pin) _'_i £ Jl = 2
J 5:9 | Modfied | Insett | [[|

Figure 2-8 Propeller Tool with LED_On application entered.

LED SCHEMATIC

If you are not using the Propeller Demo Board, add the circuit shown in Fig. 2-9
to your setup for the following exercises. Pxx labels refer to Propeller input/output
(I/O) pins, not physical pin numbers.

LEDs

P23
o
P22 p
)
~
P21 p
G <.
P20 p
k)
ol
P19 p
k)
ol
P18 p
k)
~
P17 p
= 'I/'/ A
P16 p

— Figure 2-9 Schematic for
Vss LED exercises.

24

INTRODUCTION TO PROPELLER PROGRAMMING

Propeller Communication

Verifying RAM
oD e oo

Figure 2-10 Communication dialog:
Verifying RAM.

You just wrote your first program using the Propeller’s Spin language! It’s a fully
functional program called a Propeller Application. Go ahead and try it out!

v Download your application to the Propeller by pressing the F10 key, or by selecting
the Run — Compile Current — Load RAM menu item.
o A message like Fig. 2-10 will appear briefly indicating the download status.

After downloading, the LED connected to the Propeller’s I/O pin 16 should turn on. If
you check the I/O pin with a voltmeter, you’ll measure a little more than 3 volts DC.

EXPLANATION

As you may already realize, all this program does is make the Propeller set its I/O pin
16 to output a logic high (=3.3 V). Don’t worry—we’ll do more exciting things in a
moment, but first take a closer look at how the program works.

The PUB LED_On statement declares that the block of Spin code under it is a public
method named LED_On. A method is a container that holds code of a specific purpose,
and the name of the method indicates that purpose. Without testing it, you probably
could have guessed what our LED_On method does. The term public relates to how we
can use the method, which we’ll discuss later. A Propeller Application usually contains
multiple methods, and all executable Spin instructions must be grouped inside them to
compile and execute properly.

All instructions below the PUB LED_On declaration are indented slightly to indicate
that they are part of the LED_On method, like subitems in an outline.

Tip: PUB is only one of many block designators that provide structure to the
Spin language. There are also CON and VAR (constant and global variable
declarations), 0BJ (external object references), PRI (private methods), and DAT
(data and assembly code). Look for “Block Designators” in Propeller Tool Help or
the Propeller Manual.

The dira[16] := 1and outa[16] := 1 statements set I/O pin 16 to an output direc-
tion and a logic high state, respectively. Both dira (directions) and outa (output states)
are 32-bit variables whose individual bits control the direction (input/output) and output
state (low/high) of each of the Propeller’s corresponding 32 I/O pins.

The := “colon-equals” is an assignment operator that sets the variable on its left equal
to the value of the expression on its right. We could assign full 32-bit values to each of
these two variables; however, when working with I/O pins, it’s often more convenient
to target a specific bit. The number in brackets, [16], forces the assignment operator,
:=, to affect only bit 16 of dira and outa, corresponding to I/O pin 16.

A BLINKING LED 25

Tip: The Propeller’s 32 I/O pins are general-purpose; each can be an input or
output and each can drive the same voltage/current levels. All of the Propeller’s
eight processors can read any pin as an input, but a processor must set a pin’s
direction to output if it wants to use it as an output. To learn more, search for “I/O
Pins” in Propeller Tool Help or the Propeller Manual.

The repeat instruction is a flexible looping mechanism that we’ll learn more about
as we experiment. As written in this example, repeat makes the Propeller “do nothing”
endlessly.

What’s the point of that? Without repeat our program would simply end, leaving
nothing for the Propeller to do; it would terminate and reset the I/O pin to an input
direction. In other words, the LED would light up for a small fraction of a second
and then turn off forever, giving the appearance that our application did absolutely
nothing!

Most applications have an endless amount of work to do in one or more loops. For
simple tests like this one, however, we need to include a “do nothing” repeat loop in
order to see the intended result.

Challenge: Try changing the application’s numbers and downloading it again
to see the effects. What happens when you change both occurrences of [16] to
[17]1? How about setting outa to 0 instead of 1?

A Blinking LED

Admittedly, our first example is an expensive alternative to a simple wire and light, but
now you know a way to control the Propeller’s I/O pins!
Here’s a more exciting example using the techniques we learned, plus a little more.

v Create a new application with the following code.

Tip: Press Ctrl+N to start with a fresh edit pane.

PUB LED_Blink

dira[16] := 1 "Set I/0 pin 16 to output direction
repeat "Loop endlessly...

outa[16] :=1 " Set I/0 pin 16 to high

waitent (clkfreq + cnt) " Delay for some time

outal[16] = 0 " Set I/0 pin 16 to low

waitent (clkfreq + cnt) " Delay again

Tip: This source is from: PCMProp/Chapter_02/Source/LED_Blink.spin.

Caution: Indention is important here; make sure to indent the lines under
repeat by at least one space. Also, the mark (') that appears in some places is
an apostrophe character.

26

INTRODUCTION TO PROPELLER PROGRAMMING

P23
[
[
[
[
[
[
[
> < Slow
= T = Bjink
P16 Figure 2-11 Demo
Board LED blinking.

v Compile and download this application by pressing F10, or by using the Run —
Compile Current — Load RAM menu item.

Now the LED on I/O pin 16 should blink on and off at roughly 1-second intervals.
(see Fig. 2-11). No more is this a simple wire alternative!

EXPLANATION

Are you wondering what’s to the right of the dira[16] := 1 statement yet? That’s a
comment. Comments describe the purpose of code; they mean absolutely nothing to the
Propeller, but everything to the programmer and his or her friends. This one begins with
an apostrophe ('), meaning it’s a single-line code comment. There are other types of
comments that we’ll learn about soon, but for now, just remember that comments play
a vital role in making your code understandable.

Impress your friends! Use comments generously!

Take a look at the rest of the comments in the program, and you should clearly see
what each Spin statement does. We’ll explain what is new to us.

We’ve seen repeat before, as an endless loop that did nothing, but now it’s more
useful. This repeat is a loop that endlessly executes a series of four statements within
it. Did you notice that the statements under it are indented? That’s important! It means
they are part of the repeat loop. In fact, by default, the editor indicates that these are
part of the loop by displaying little hierarchy arrows next to them, as in Fig. 2-12.

PUB LED Blink Hierarchy arrows, called “block group
T indicators,” automatically appear to point

out code that belongs to a group; in this
case, the last four statements are part of
an endless repeat loop.

dirallE] = 1

outal16] == 1

waitcent(clkfreq + cnt)

outal16] =0

waitent(clkfreq + cnt)

Figure 2-12 A close-up of the LED_BIlink method as it appears in the editor.

RAM VERSUS EEPROM 27

INDENTATION IS IMPORTANT!!

The Spin language conserves precious screen space by omitting begin and end
markers on groups of code. Just as we rely on indention in outlines to show which
subtopics belong to a topic, Spin relies on indention to know what statements belong
to special control commands like repeat. You can toggle the block group indicators
on and off by pressing Ctrl+I; Spin will understand the indention either way.

The waitent command is something we haven’t seen before. It means, “Wait for
System Counter,” and serves as a powerful delay mechanism.

What do you do when you want to wait for five minutes? Well, of course, you check
the current time, add five minutes, then “watch the clock’ until that time is reached.
The waitent command makes the Propeller “watch the clock™ until the desired moment
is reached.

The expression within waitent’s parentheses is the desired moment to wait for. Both
clkfreq and cnt are built-in variables that relate to time. Think of clkfreq as “one
second” and cnt as “the current time.” So the expression clkfreq + cnt means “one
second plus the current time” or “one second in the future.”

Information: Clkfreq contains the current system clock frequency—the
number of clock cycles that occur per second. Cnt contains the current System
Counter value—a value that increments with every clock cycle. The value in cnt
doesn’t relate directly to the time of day; however, the difference between the
value in cnt now and its value later is the exact number of clock cycles that
passed during that time, which is a useful number for timing. For accurate timing,
see “Timing Is Everything.”

Challenge: Try changing the code so the LED is on for roughly one-eighth of
a second and off for one second. Hint: /' is the divide operator.

RAM versus EEPROM

If you followed the last example, you now have a happily blinking LED on your devel-
opment board. Will it continue to blink after a reset or power cycle?

v Try pressing the reset button or switching power off and on again.

Did the LED ever light up again? No, it didn’t, because we downloaded our applica-
tion to random access memory (RAM) only. RAM contents are lost when power fails
or a reset occurs, so when the Propeller started up again, our application was missing.

What if we want our application to start up again the next time the Propeller starts
up? We need to download to the Propeller’s external EEPROM to preserve our applica-
tion even without power.

28

INTRODUCTION TO PROPELLER PROGRAMMING

Propeller Communication

Programming EEPROM
oD e oo

Figure 2-13 Communication dialog:
Programming EEPROM.

v Download your Propeller Application again, but this time by pressing the F11 key
or by selecting the Run — Compile Current — Load EEPROM menu item.
o0 Once again, a message will appear indicating the download status, but this time it
lasts longer as it programs the Propeller’s external EEPROM chip (see Fig. 2-13).
v After successful download, press the reset button or switch power off and on
again.

This time, after a short delay, your application restarts and the LED blinks again.
This will continue to happen after every reset or power cycle. When you’re ready for
your Propeller Application to “live” forever, you should download to EEPROM instead
of just to RAM.

WONDERING ABOUT THAT POWER-ON/RESET DELAY?

It takes about two seconds for the Propeller to complete its bootup procedure,
including the time to load your application from EEPROM.

Don’t worry—that delay won’t increase with the size of your application!
The Propeller always loads all 32 KB from EEPROM, regardless of how many, or
how few, instructions your application contains. See “Boot Up Procedure” in the
Propeller Tool’s Help to learn more.

A More Powerful Blink

Remember how we said to focus on simple problems first and tasks appropriate for
parallel processes will become apparent? Our blinking LED serves as one such example
process. Our application currently performs only one process in one specific way, but
it could perform this process in many different ways, either sequentially or in parallel.
Let’s enhance our method to make it easier to do this.

In this exercise, we’ll create a more flexible version of our blinking LED method
and we’ll demonstrate it in sequential operation. In the exercise immediately following,
we’ll command multiple processes in parallel!

‘We mentioned earlier that a method has a name and contains instructions. What might
not have been so apparent is that a method is like an action that can be called upon by
name, causing the processor to perform its list of instructions one at a time. As it turns
out, in the last example, we could have called our LED_Blink method by simply typing
its name elsewhere in the code, like this:

A MORE POWERFUL BLINK 29

PUB SomeOtherMethod
LED_Blink "Blink the LED

This is how methods are activated most of the time. We didn’t need to do this in our
previous examples because our applications had only one method and the Propeller
naturally calls the first method in an application.

Not only can we call a method by name; we can also demand that it take on certain
attributes. Suppose that we want this LED to blink that way and for so long. 1t’s all
possible with the same method as long as it’s written to support those attributes.

Take a look at this new method we based on the previous example:

PUB LED_Flash (Pin, Duration, Count)
{Flash led on PIN for Duration a total of Count times.
Duration is in 1/100th second units.}

Duration := clkfreq / 100 * Duration "Calculate cycle duration
dira[16..23]~~ "Set pins to output
repeat Count * 2 "Loop Count * 2 times...
'outa[Pin] " Toggle I/0 pin
waitent (Duration + cnt) " Delay for some time

Caution: Don’t run this yet! Our application isn’t ready until later in this
exercise!

EXPLANATION

Our method declaration looks different, doesn’t it?

PUB LED_Flash (Pin, Duration, Count)

Yes, we changed the name, but now there are also items in parentheses. The Pin,
Duration, and Count items are parameters we made up to accept the attribute we spoke
of earlier. Each of them is a placeholder for values (numbers or expressions) when the
method is called. Figure 2-14 shows an example of this in action.

PUB SomeMethod

LED_Flash(16, 30, 5) Call LED_Flash method 1. SomeMethod calls

LED_Flash with parameters.
2. The parameter values are
“copied” into LED_Flash’s
parameter variables.
3. LED_Flash references those
PUB LED_Flash (Pin, Duration, Count) values via their parameter
{Flash led on PIN for Duration a total of Count times. names

Duration is in 1/100th second units.}

Figure 2-14 Method call with parameters.

30

INTRODUCTION TO PROPELLER PROGRAMMING

To the method, the parameters are local variables for its own use. It can read them
and manipulate them without affecting anything outside of itself.

In our new method, the two lines following the declaration are a different type of
comment; a multiline comment. Multiline comments begin with an open brace ({) and
end with a close brace (}) and can span more than one line of code.

The Duration := clkfreq / 100 * Duration statement means, “Make dura-
tion equal to clkfreq divided by 100 and multiplied by Duration’s original value.”
Remember, clkfreqis like “one second,” so dividing it by 100 is “1/100th of a second,”
and multiplying that by Duration gives us a multiple of 100ths of a second. Note the
comment above the line.

The dira[16..23]~~ statement is a twist on an old theme. Recall that dira controls
I/O pin directions and the number in brackets is the bit, or I/O pin, to affect. This state-
ment is a clever way to affect all the bits from 16 to 23 at once. So what do they get set
to? The trailing ~~ operator, when used this way, is a set assignment operator; it sets
the bit(s) of the variable to which it is attached to high (1). It’s shorthand, and without
it we’d have to say: dira[16..23] := #11111111,

Note: We're setting all eight of these pins to outputs only because the Propeller
Demo Board shares them with the VGA circuit, which causes certain LED pairs to
light simultaneously when only one is actually activated. This would not happen if
they were wired as in Fig. 2-9.

Did you notice that our repeat loop has changed? It now says repeat Count * 2.
Previously, repeat was always an infinite loop, but now it is a finite loop that executes
only Count*2 times.

The contents of our loop changed as well. In the !outa[Pin] statement, the ! is a
bitwise NOT assignment operator; it toggles the bit(s) of the variable to which it is
attached. It makes the I/O pin’s output state toggle to the opposite state: high if it was
low, low if it was high. It’s shorthand for outa[Pin] := NOT outa[Pin].

Tip: You can learn more about these and many other operators by searching for
“Spin Operators” in Propeller Tool Help or the Propeller Manual.

So now our LED_Flash method takes three parameters (Pin, Duration, and Count),
calculates the actual duration in clock cycles (in 100ths of a second units), sets the
pin directions, and loops Count*2 times, toggling Pin each time for the calculated
duration.

But it really won’t do anything for us if we don’t call it properly!

Let’s add another method to the top of our application so it appears as follows:

PUB Main
LED_Flash (16, 30, 5) "Flash led
LED_Flash(19, 15, 15) "Then another

LED_Flash (23, 7, 26) "And finally a third

A MORE POWERFUL BLINK 31

PUB LED_Flash (Pin, Duration, Count)
{Flash led on PIN for Duration a total of Count times.
Duration is in 1/100th second units.}

Duration := clkfreq / 100 * Duration "Calculate cycle duration

dira[16..23]~~ "Set pins to output

repeat Count * 2 "Loop Count * 2 times...
'outal[Pin] " Toggle I/0 pin
waitent (Duration + cnt) " Delay for some time

Tip: This source is from: PCMProp/Chapter_02/Source/LED_Flash.spin.

Now our application has two methods: Main and LED_Flash. Logically, our Main
method is now our application’s “director,” giving commands to guide the nature of
our application. The LED_Flash method is now a support method, obeying the Main
method’s commands.

Information: What makes Main so special? It’s not its name—it’s the position
it holds. Main is special only because it’s the first method in our application, the
one the Propeller activates automatically when the application is started.

Main calls LED_Flash a number of times, each with different values for the param-
eters. What do you think is going to happen? Try it out and see!

v Download this application to the Propeller.
As you may have predicted, our application blinks pin 16’s LED 5 times slowly,

then pin 19’s LED 15 times more quickly, and finally pin 23’s LED 26 times very fast
(see Fig. 2-15).

P23 P23 P23
D (D —m [
[Ami| [Ami| [Ami|
[Ami| [Ami| [Ami|
[Ami| [Ami| [Ami|
[T o (D
[Ami| [Ami| [Ami|
> - <~ Slow — —
= W= gk anl anl
P16 P16 P16

Figure 2-15 Demo Board LEDs blinking in sequence.

32

INTRODUCTION TO PROPELLER PROGRAMMING

Specifically, when the application starts, the Propeller calls its first method, Main.
The first line of Main is a call to LED_Flash, so the Propeller executes each state-
ment in LED_Flash. When the finite loop finishes, there’s no more code to execute in
LED_Flash, so the Propeller “returns” to Main and executes the second line—another
call to LED_Flash. This continues until it has executed all the statements of Main in
sequence. Then, since there are no more statements in Main, it “returns.” But to where?
The Propeller called Main itself, so the “return” from Main causes the processor to
terminate.

All Together Now

Now suppose the last application isn’t quite what we needed. What if we need each
blinking process to happen at the same time (in parallel) instead of one at a time (in
sequence)?

On a single-core device, this request would be a nightmare because the timing of
each individual process, as tested earlier, would negatively affect the timing of every
process as a group. But on a multicore device like the Propeller, this is relatively easy!
With minor changes to our code, we’ll launch each instance of LED_Flash into a separate
cog (processor) to execute in parallel.

Information: What's a cog? It’s the Propeller’s name for each of its
processors. They are called cogs since they are simple and uniform, like the cogs
on gears that mesh with others of their kind to induce change. Their simplicity
assures reliability, and as a collective, they deliver powerful results.

Here’s the updated code. Try it out now! We’ll explain it in a moment.

VAR

long StackA[32] "Stack workspace for cogs
long StackB[32]
long StackC[32]

PUB Main

cognew (LED_Flash (16, 30, 5), @StackA) 'Launch cog to flash led
cognew (LED_Flash (19, 15, 15), @StackB) 'And another for different led
cognew (LED_Flash (23, 7, 26), @StackC) 'And a third, all at same time

PUB LED_Flash (Pin, Duration, Count)
{Flash led on PIN for Duration a total of Count times.
Duration is in 1/100th second units.}

ALL TOGETHER NOW 33

Duration := clkfreq / 100 * Duration "Calculate cycle duration

dira[16..23]~~ "Set pins to output

repeat Count * 2 "Loop Count * 2 times...
loutal[Pin] " Toggle I/0 pin
waitent (Duration + cnt) " Delay for some time

Tip: This source is from: PCMProp/Chapter_02/Source/LED_MultiFlash.spin.

v Download this application to the Propeller and note how it behaves differently from
the last exercise.

Now all three LEDs blink simultaneously, at different rates and different counts, but
each exactly the way they did before (see Fig. 2-16). There is no difference in each
individual LED’s behavior!

This is the beauty of a multicore device like the Propeller! You can focus your time on
a simple implementation of a process with no regard to other parts of a final application
and then simply connect the individual parts together in the end. And this can be done
with many different types of processes, not just multiple instances of the same process.

EXPLANATION

Our application code didn’t change much. In fact, the LED_F 1ash method didn’t change
at all.

First we added a new block at the top of the code—a VAR block—which declares a
block of global variables. The statement long StackA[32] reserves 32 longs (128 bytes)
of memory and calls it Stackf. The declarations for StackB and StackC are similar. As
the comment indicates, this memory is for cog workspace.

Information: When a cog executes Spin code, it needs stack space—that
is, temporary workspace to process method calls and expressions. The Spin
compiler automatically assigns the first cog’s workspace (for the main application
code), but additional cogs launched on Spin code need manually assigned
workspace. Thirty-two longs is more than enough for this example. We show how
to determine how much is enough later in “Sizing the Stack.”

P23

EIJ::—
imi

imn

Fastest
Blink

a7,

< Faster

0 = Bjink

N2

D:D/ Slow
0 = gjing

P16 Figure 2-16 Demo Board
LEDs blinking in parallel.

a7

34

INTRODUCTION TO PROPELLER PROGRAMMING

Calls to LED_Flash, in

previous exercise, are now
cogneu((LED_Flash (16, 30, 5)) , eStackR) the first parameter of

cognew, Which starts a new
cogneu({ LED Flash (19, 15, 15)) , @StackB) cog to run them in parallel.
cogneul{ LED Flash (23, 7, 26)) , @StackC)

Figure 2-17 Method call with parameters.

Our Main method changed the way we call the LED_Flash method. Now each of our
calls is the first parameter of cognew commands; as shown in Fig. 2-17. Cogneu, as the
name implies, starts a new cog to run the method indicated by its first parameter.

When the statement cognew (LED_Flash (16, 3@, 5), @Stackf) is executed, a new
cog starts up to run the LED_Flash method (with the parameters 16, 30, and 5). The
second parameter of cognew, @Stackf, directs the new cog to its assigned workspace.
The @ operator returns the address of the variable it’s attached to, so the new cog locates
its workspace in the memory starting at the address of Stackf.

As Main executes, it starts three other cogs, each running LED_Flash with different
parameters and using different workspaces; then Main runs out of code, causing the first
cog (the application cog) to terminate. As each of the remaining cogs finish executing
their instance of LED_Flash, they individually terminate, leaving absolutely no cogs
running and no LEDs flashing.

Wrapping It Up

So far we’ve created a nice method to perform our desired task: flashing an LED. It’s
been enhanced, tested in isolation, and even integration-tested as parallel processes. You
didn’t know it, but all this time we’ve been building towards this moment: the creation
of a building block object.

An object is a set of code and data that is self-contained and has a specific purpose.
Though we called our examples “Propeller Applications,” that’s only half the story. A
Propeller Application is an executable image made from an object, which itself may
be made up of one or more other objects. We’ve actually been designing an object all
along. Now we want to transform it into a building block object.

Building block objects are meant to be subcomponents of other objects; they have
a set of required inputs and deterministic outputs. Propeller users love building block
objects because they can swiftly combine them into one object, or application, that
performs with all the expert skills of the collective of objects. Figure 2-18 shows an
analogy for this concept.

Take a look at the following code; we rewrote the top portions of our last exercise,
but our core, the LED_Flash method, is only slightly different. Can you see how?

v Enter and save this code. Give it the name “Flash.spin.”

WRAPPINGITUP 35

Objects A builder chooses from
many premade objects to
construct a bike in very
little time.

Can you imagine having to
create every object yourself?
Utilizing a set of high-quality
objects saves you an
immense amount of time.

Figure 2-18 Building block objects used in a bike application.

VAR
long Cog "Holds ID of started cog
long Stack[32] "Stack workspace for cog

PUB Start(Pin, Duration, Count)
{{Start flashing led on Pin, for Duration, a total of Count times.}}

Stop
Cog := cognew(LED_Flash (Pin, Duration, Count), @Stack) + 1

PUB Stop
{{Stop flashing led.}}

if Cog 'Did we start a cog?
cogstop (Cog~ - 1) " If so, stop it

PRI LED_Flash(Pin, Duration, Count)
{Flash led on PIN for Duration a total of Count times.
Duration is in 1/100th second units.}

Duration := clkfreq / 100 * Duration "Calculate cycle duration
dira[16..23]~~ "Set pins to output

36

INTRODUCTION TO PROPELLER PROGRAMMING

repeat Count * 2 "Loop Count * 2 times...
louta[Pin] " Toggle I/0 pin
waitent (Duration + cnt) " Delay for some time

Tip: This source is from: PCMProp/Chapter_02/Source/Flash.spin.

Caution: Don’t run this yet! Our application isn’t ready until later in this exercise.

EXPLANATION

The only change we made to LED_F lash is to declare it as PRI instead of PUB. Do you
recall how PUB declares a “public” method? PRI declares a private method. The differ-
ence is that while public methods can be called by other objects, private methods cannot.
This feature helps an object maintain its integrity. Generally, most object methods
are declared as public since they are meant to be called by other objects at any time.
Methods not designed for random calling from other objects should be declared as
private, especially those that threaten the object’s integrity if misused.

Since LED_Flash is our core method, we’re making it private just as a matter of
principle. We’re making this object automatically handle cog launching, memory man-
agement, and LED blinking with one simple interface, so there’s no need for outside
objects to call LED_Flash directly.

In the VAR block we declared a variable, Cog, to hold the ID of the cog this object
will launch. We’ll use this to stop that cog later, if necessary. We also declared a single
Stack variable of 32 longs, the same size as before.

We replaced our Main method from the previous example with two new methods:
Start and Stop. The Start method launches a cog to flash our LED. The Stop method
stops the cog launched by Start, if any.

Information: By convention, whenever you create an object that launches
another cog, you should have methods named “Start” and “Stop” that manage
the cog. This provides a standard interface that gives users of your object a clear
indication of its intention.

Our Start method includes the same parameters as our LED_Flash method. Other
objects will call our Start method to launch another cog to flash an LED with the given
parameters.

Ironically, it seems, the first thing Start does is call Stop. This is because we want
each instance of our object to maintain only one cog at a time. We don’t want users
calling our object’s Start method multiple times and running out of cogs.

The next line, Cog := cognew (LED_Flash (Pin, Duration, Count), @Stack) + 1,
is a combined expression and cognew instruction. If you look carefully, you’ll see that
the cogneuw instruction launches our LED_Flash method with the parameters originally
given to Start and assigns it some workspace, @Stack. But why do we set the Cog variable
equal to cognew () + 1? As it turns out, cognew returns a value equal to the ID (0 to 7) of
the cog it actually started, or —1 if none were started. We’ll use this to keep track of the
cog we launched so we can stop it later, if desired. We add 1 to the ID to make the code
in Stop more convenient, as you’ll see in a moment.

WRAPPING ITUP___ 37

In Stop, we check if a cog was started by us and, if so, we stop it. The if is a deci-
sion command. If its condition—Cog in this case—is “true,” it executes the block of
code within it: the indented cogstop command. The condition if statements evaluate
can range from simple to elaborate expressions, but the result is always the same: it’s
either true or false. In this case, our decision is simple; it means, “If the value in the
Cog variable is not zero, execute a cogstop statement.” Remember that Cog was set to
cognew () + 1, giving us a value of 0 (if no cog was started) or a value of 1 through 8
if a cog was started.

Our cogstop (Cog~ - 1) command, if executed, stops the cog whose ID is the value
Cog - 1, and then post-clears (~) the Cog variable to zero. We clear it so an additional
call to Stop does nothing.

Tip: You can find out more about the commands cogneuw, cogstop, and if, and
the post-clear operator (~) in the Propeller Tool Help or Propeller Manual.

You may have noticed the first comment in Start and Stop begins with two brackets:
{{. This is not a mistake; it’s yet another type of comment—a document comment. Use it
for embedding documentation right inside the object that can be seen using the Propeller
Tool’s Documentation view (see Fig. 2-19).

USING OUR BUILDING BLOCK OBJECT

Now that our Flash object is ready, others can use it by including its name in an 0BJ

block, like this one:

0BJ
LED "Flash” "Include Flash object
Propeller Tool - Flash E]EJ.
Fle Edt Run Help - Select Documentation
O LEDs Flash | view to see an object’s
D Mash [7] " FullSource (Condensed Summary % Documentation =|| compiled documentation.

Object "Flash” Interface:

PIIR Start(Pi Dirati Cannt
E|P¢opellaLihraw-Den‘m LJ PlIE FH':; (Mg SRR, nun)

4ud keypad Reader DEMO_spin -

~

Start flashing led on Pin, for Duration, a total of Co

ADB03_DEMO. zpin HFUB Stop

COIL_demo.spin

Debug_Led_Test spin ¥ |Stop flashing led.

2] > v
Propelar Snisee [F snin) LJ £ >

=) Paralax Inc A
=3 Propelle Tool ¥1.25 Program® 19 Longs
=D Examples = [Variable: 18 Longs
#-C3 Help
5 Libr)
G YN (G Py e The Start method’s doc
2.5 Help g SlarLiFin, Duraliun, Lount comments show up here.
< >

1:1 |HeadUnly | Insert :Llomplled

Figure 2-19 Documentation view.

38

INTRODUCTION TO PROPELLER PROGRAMMING

This includes our Flash object that we saved in the previous steps and gives it
the nickname “LED.” Now we can refer to methods within the Flash object using
nickname.methodname syntax, like this:

LED.Start (16, 30, 5) "Blink LED 16 five times slowly

This statement calls LED’s Start method. That method, in our Flash object, launches
another cog to run the private LED_Flash method using the parameters given: 16, 30, and 5.

Remember the recent exercise where we launched our LED_Flash method on three
separate LEDs at the same time? Now that we’ve neatly wrapped the critical code in
our Flash object, other objects can achieve the same glory quite easily. Check out the
following code.

v In a new edit pane, enter and save this code. Store it in the same folder as “Flash.
spin” and name it “LEDs.spin.”

0BJ
LED[3] : "Flash” "Include Flash object

PUB Main
LED[@].Start (16, 30, 5) "Blink LED 16 five times slowly
LED[1].Start (19, 15, 15) "Blink LED 19 fifteen times faster
LED[2].Start (23, 7, 26) "Blink LED 23 twenty-six times fastest

Tip: This source is from: PCMProp/Chapter_02/Source/LEDs.spin.
v Download this application to the Propeller.

As this example shows, since our Flash object does the major work, our new
application-level object is clean and simple, but can blink three LEDs at different rates
simultaneously.

Tip: The LED[3] statement in the 0BJ block declared an array of three Flash
objects. Each one uses the same code but its own variable space. After compiling,
you can explore the structure of your multiobject application in the Object View
(upper-left pane of the Propeller Tool). Search for “Object View” in Propeller Tool
Help to learn more.

Timing Is Everything

How fast has our Propeller been running all this time? We have a 5-MHz crystal con-
nected (see Fig. 2-20), so it’s reasonable to think it’s running at 5 MHz, right?

TIMING IS EVERYTHING 39

5-MHz crystal

Figure 2-20 Propeller, EEPROM, and crystal circuit on
Propeller Demo Board.

That is reasonable, but incorrect. The Propeller has some incredibly powerful clock-
ing features, but as it turns out, none of our examples has set the clock mode. All this
time our Propeller has been using its internal 12-MHz clock, leaving the external
5-MHz crystal dormant.

Some applications will never need an external crystal because the internal clock is
just fine. For most applications, however, the internal clock is excessively inaccurate.

Information: The internal clock runs ideally at either 20 kHz or 12 MHz, but
its frequency can vary by as much as +66% from the ideal.

Since we’ve been using the internal 12-MHz clock, our waitent delays have not been
very accurate; clkfreq contains the ideal frequency, not the actual frequency in this case.

To achieve much higher clock accuracy we need to use an external crystal. To make
the Propeller use the external 5-MHz crystal in our circuit, our application needs to set
some built-in constants.

CON
_clkmode = xtall + plllbx "Use low crystal gain, wind up 16x
_xinfreq = 5_000_000 "External 5 MHz crystal on XI & X0

This is a CON block with the typical clock configuration. The _clkmode constant is
set for low crystal gain (xtall) and a phase-locked loop (PLL) wind-up of 16 times.
The _xinfreq tells the Propeller that the external crystal is providing it a 5-MHz clock
signal. The combination of _clkmode and _xinfreq means we have an accurate 5S-MHz
clock multiplied by 16 (with the Propeller’s internal PLL) for a total speed of 80 MHz.
That’s an amazing speed from such an inexpensive crystal.

40 INTRODUCTION TO PROPELLER PROGRAMMING

Applying this to the previous examples may not appear to make a change, but if you
looked at the difference on an oscilloscope it would be clear.

Tip: The clock mode constants can only be set in the application-level object.
Clock mode constants in building block objects are ignored at compile time.

SYNCHRONIZED DELAYS

Despite the clock settings noted previously, the timing of events will still be slightly off
unless we use waitent in a specific way. So far, our loops have performed an operation
and then waited for an interval of time. Since that interval was our “ideal” delay time, it
didn’t account for the overhead of the rest of the instructions in the loop. The real delay
between any two occurrences of our looped event is the time it took to start the loop
iteration, plus the time to perform the event, plus our “idealized” loop delay.

For our application, timing accuracy isn’t vital, but for many applications, accurate
timing is a must. For example, code like the following causes a cumulative error in the
moment the I/O pin toggles compared with the ideal moment in time, as seen in Fig. 2-21.
Note that the Count, Duration, and Pin symbols are long variables.

dira[Pin]~~ "Set Pin to output

repeat Count * 2 "Loop Count * 2 times...
'outal[Pin] " Toggle I/0 pin
waitent (Duration + cnt) " Delay for some time

Tip: This source is from: PCMProp/Chapter_02/Source/Out_Of_Synch.spin.

In contrast, with just a slight rewrite of the code, it uses a single moment in time
(Time 0 in Fig. 2-22) as an absolute reference for all future moments and perfectly
synchronizes the I/O pin events to those moments. Note that the Count, Duration, Pin,
and Time symbols are long variables.

diral[Pin]~~ "Set Pin to output

Time := cnt "Determine reference moment

repeat Count * 2 "Loop Count * 2 times...
waitent (Time += Duration) " Delay for some time
'outa[Pin] " Toggle I/0 pin

Time (units of Duration)

gt N 0 I O I I

Figure 2-21 1/O pin events out of synch with ideal duration.

SIZING THE STACK 41

Tip: This source is from: PCMProp/Chapter_02/Source/In_Synch.spin.

Time (units of Duration)

Pin —

Figure 2-22 |/O pin events synchronized with ideal duration.

Just before the loop, Time is set to the current System Counter value. Inside the loop,
we first wait for the moment indicated by Time + Duration, then perform the I/O event.
The Time += Duration expression calculates that next moment and adjusts Time to that
moment in preparation for the next loop iteration.

This technique works for any loop as long as Duration is greater than the longest
possible loop overhead.

Tip: You will find an in-depth look at tackling timing-related bugs in Chapter 3.
You can also find out more by looking up “Synchronized Delays” in Propeller Tool
Help or the Propeller Manual.

Sizing the Stack

In “All Together Now,” we mentioned the need for stack space when launching Spin
code into another cog. Now we’ll discuss how to size it.

The stack used by a cog running Spin code is temporary workspace. Within the stack,
the amount of memory actually used changes with time. It grows while evaluating
expressions and calling nested methods, and shrinks when returning expression results
and returning from methods.

While developing objects, it is best to size the stack reserved for new cogs larger
than necessary to avoid the strange results that can plague a program whose stack is too
small. Until you get experienced with sizing the stack, we recommend reserving 128
longs initially and optimizing it later.

Why should you optimize, and when is the best time to do it? You should optimize
the size of stack space so your object does not waste precious memory for all the
applications that use it. Only when you’re absolutely done with your object should you
consider optimizing stack space; doing so beforehand could be disastrous as you make
final tweaks to your code.

To determine the optimal stack size needed for your object, we recommend using the
Stack Length object that comes with the Propeller Tool.

42

INTRODUCTION TO PROPELLER PROGRAMMING

Tip: Many objects come with the Propeller Tool software. To find demonstration
code for them, choose Propeller Library—Demos from the drop-down list above
the Folder View. To find the actual building block objects, choose Propeller Library
instead.

v Load the Stack Length Demo object (see the previous Tip) and read its comments.
o If you want to learn even more, load the Stack Length object itself and read its
top comments and its “Theory of Operation” section.

We’ll use the Stack Length Demo object as a template for our test. As it suggests,
we copy and paste its “temporary code” above the existing code in our Flash object,
as shown here:

CON
_clkmode = xtall + plll6x "Use crystal*16 for fast serial
_xinfreq = 5 000_000 "External 5 MHz crystal XI & X0
0BJ
Stk : "Stack Length” "Include Stack Length Object
PUB TestStack
Stk.Init (eStack, 32) "Init reserved Stack space
Start (16, 30, 5) "Exercise object under test
waitent (clkfreq * 2 + cnt) "Wait ample time for max stack usage
Stk.GetlLength (30, 115200) "Send results at 115,200 baud

VAR
long Cog "Holds ID of started cog
long Stack[32] "Stack workspace for cog

PUB Start(Pin, Duration, Count)
{{Start flashing led on Pin, for Duration, a total of Count times.}}

Stop
Cog := cognew(LED_Flash (Pin, Duration, Count), @Stack) + 1
PUB Stop

{{Stop flashing led.}}

if Cog 'Did we start a cog?
cogstop (Cog~ - 1) " If so, stop it

SIZING THE STACK 43

PRI LED_Flash (Pin, Duration, Count)
{Flash led on PIN for Duration a total of Count times.
Duration is in 1/100th second units.}

Duration := clkfreq / 100 * Duration "Calculate cycle duration

dira[16..23]~~ "Set pins to output

repeat Count * 2 "Loop Count * 2 times...
loutal[Pin] " Toggle I/0 pin
waitcent (Duration + cnt) " Delay for some time

Tip: This source is from: PCMProp/Chapter_02/Source/Flash_Stack_Test.spin.

Note that we carefully checked and modified the code in the temporary TestStack
method so that:

1. “Stack,” in the Stk.Init statement, is the actual name of our reserved stack space
for the LED_Flash method.
2. “32) in the Stk.Init statement, is the actual number of longs we reserved for
LED_Flash’s stack space.
. The Start statement contains valid parameters to our Flash object’s Start method.
4. The waitent statement waits long enough for our LED_Flash method to be fully
exercised (at least one iteration of its repeat loop).

(98]

RUNNING THE STACK TEST

Now it’s time to run the test. The Stack Length object outputs its result serially on the
Propeller’s programming port. To receive the information, you need a simple terminal
application. As it so happens, the Propeller Tool installer includes one called Parallax
Serial Terminal.

v Start the Parallax Serial Terminal software.
o An icon for it may have been placed on your desktop during installation, or you
may find it in your computer’s Start — All Programs — Parallax Inc — Propeller
Tool . . . path.
o A window should appear similar to Fig. 2-23.
v Select your Propeller’s programming port from the Parallax Serial Terminal’s Com
Port field.
v Select 115200 from the Baud Rate field.
v Arrange the Parallax Serial Terminal and Propeller Tool windows so you can get to
each one quickly with the mouse.
v Select the Propeller Tool software.

When you selected the Propeller Tool software, did you notice something happened
with the Parallax Serial Terminal? The title bar (top of window) and the lower-right

44 INTRODUCTION TO PROPELLER PROGRAMMING

Transmit pane—type
text here to transmit to
. 7 Parallzx Serial Terminal I the Propeller.

Receive pane—text
from the Propeller
appears here.

Control panel—set port,

baud rate, and other
communication

[« | attributes here.

Com Part: Baud Rate: o A e T R TS 1
iNDNE v] i115200 vi o F% o DSR o

Prefs... | Clear | Fause | Dizable I

Figure 2-23 Parallax Serial Terminal: default display.

button (control panel) change to let you know the Parallax Serial Terminal has closed the
serial port (see Fig. 2-24). This is important because it lets the Propeller Tool software
open the port to download our application.

v Start the download of our modified Flash object and, during the download, click the
Enable button of the Parallax Serial Terminal.

Com Port; Baud Rate: o3 T !" =S 5
jcomta =] [115200 =| &m0 o 0oR o © ¥ Echon
Frets... ' Clear Fatize Enable I

Click this button to enable the terminal;
this opens the serial port.

Figure 2-24 Control panel of Parallax Serial Terminal: waiting
for enable.

PROPELLER OBJECTS AND RESOURCES 45

. 7 Parallax Serial Terminal - {COM14)

Stack Usage: 2

The stack test shows the resulting
utilization; 9 longs.

Figure 2-25 Stack utilization message from Propeller.

After our modified Flash object is downloaded, the Parallax Serial Terminal will
open the serial port and wait for input. The pin 16 LED will flash, as expected, and a
message will soon appear in the receive pane (see Fig. 2-25).

Now we know we only need to reserve 9 longs of space for the LED_Flash meth-
od’s stack. We can adjust the stack size, remove the temporary code, and publish our
object.

VAR
long Cog "Holds ID of started cog
long Stack[9] "Stack workspace for cog

Propeller Objects and Resources

We encourage you to learn more about the Propeller. Besides reading the rest of this book
and exploring outside resources we’ve shown you, study other developers’ objects. Dozens
are included with the Propeller Tool software, and hundreds more are in a central location
called the Propeller Object Exchange—obex.parallax.com (see Fig. 2-26).

There’s an active user forum full of Propeller users with ideas, questions,
answers, and genuine motivation to share (see Fig. 2-27). Visit the Parallax Forums

46 INTRODUCTION TO PROPELLER PROGRAMMING

£ Propelier Dbject Exchangs - Windows Internet Explerer

o The Propeller Object Exchange is

where developers go to share their

-0 & ks
e objects with others. It’s free! You can
— quickly download, try out, experiment
with, and learn from other Propeller
Propeller ObjeCtS-
Object Exchange
& B prome o - .
e ks Objects are organized by category for

easy locating. Drill down through
lists for more detail including user
Uiskels ratings and reviews.

Mielptul hmection, language, development aid

T W -

Figure 2-26 Propeller Object Exchange (obex.parallax.com).

PROPELLER OBJECTS AND RESOURCES 47

/= Propaller Chip :: Parallax Forums - Windows Internet Explorer

@.] il o ol ol i g =750 k] 9 (%] 3¢ [I2E
B < | @rropsier chp: paratas Foruns f - B & - e @k T

PARALLAXE User's Support

http://forums_parallax.com FORUM
Log uff| Control Banal |Erivata Messaga @] admin [Homa | ealandar| Search | Mambar List | Halp [T

g m—
Parallax Forimns = Pubilic Fordims = Propeller Chip Propeller Chp :‘

[Subecribe To Thie Forum | Mark Thic Forum Head]

Hew Topic | [-1t Comment ¥ Topic Threads :: Showing | 75 ¥ topics per page
Forum Page | Isti 2?2 34 370 371 372

. [} Closcks Rusger TnHawaii 8 170

(@] @ Kudos o Gardge! Gangster Oldbitcollector 9 259 HNiske M&S::E;PM
=] 9 WAITPEQ help please Hariey & G Yesterny 501 PM
=] OBEX / MIT license question WSGFO 2 8 vmg?;:sr. M
& Tile size, file seek, type a file giannissam 3 94 Yew'!‘::lrm:i oM
] Newbic quesbion, about recieving a number and send it to a DAC awvionikeren 8 126 Yﬂ::::;h;r?: PM
E3 I love the Propaller g SamMishal 23 U vm"m M

H propxMM512-040 Module - Up to IMB 5.3MB/s 77 SRAM Jazeed s 651 ,mm“ oM
=] U SPDIF (digital audio) vulpul demo Micah Dowty 13 1063 \h-:lmth-u:bl‘l .42 AM
[XPort loader agodwin W e Y:sbu::l';:rdrllnﬂﬂ AM
=] Racing/Flight Simulator Motinn Contral rough_wnad 18 A, ymr::‘llm;w AM
0 hafic accelermel er pilotoo 2 91 el S
] Broadcast video to be used as a wireless comm. link? Philldapil 13 250 \‘nﬂaurd:‘:;:l‘l AM
=] 6.78 MHz crystal 7 Ken Peterson 17 854 Yn;::d:h;;;;m
B Music: Synthesizer ohject with General MIDT sound sel Arbe 53 521 oeMm

D @ mterel Fanmn - J

The Propeller Forum is full of great ideas, enthusiastic supporters, and endless opportunities to learn.

Figure 2-27 Parallax Propeller Forum.

at forums.parallax.com. The top threads contain links to many valuable Propeller
resources.

More tips and examples can be found by joining a Propeller Webinar (a live web-
based meeting) or viewing archived webinars at www.parallax.com/go/webinar (see
Fig. 2-28). This is a way to connect to Parallax staff and get an inside look at how to
use the multicore Propeller.

www.parallax.com/go/webinar

48

INTRODUCTION TO PROPELLER PROGRAMMING

e Propallar Wabinar Archives - Windows Internet Explorar

—,
G_?—.’,' T ey s g v| | [3¢] [mumse |[2i-]
= — . B »
oAk & | Propelles 'Wabinar Archives | | a] @ & = r._;'P_m)'-"QTI_lhv
-
¥ Home E
» Store AN “\ N
» Product Info \\ \\ \ N _
b Educabion A\ .
 Swppont P ller Webi A h <
rope er e lnar rc lve
Suppart Home
Pruduct Infurmatius \ ', '. ||
Davnloads
Uiscussion Forums
This 15 3 of y fram past bropaller Wabinars. Thase wabinars ware enginally hosted lva wth 3
fhjart Fyrhange par i i that dad via thair . Tor the benefit of all, we have provided the important parts of each webinar
Webinars as a seres nf short I‘ﬂ|1(|'=1 I'|||1= in hath WMVY and MPd farmats. ox
Tech Suppart
Would you lika to attand a live wabinar? View our webinar schedule for more detalls.
Consultants
 Hacources
» Company Viewing Tipss Many of these clips consist of computer screan captures at 3 o of 1 »- =
: o i ot the, et nres upgins ety Sl b staad o ToTare Wi & reschtion of 12DICLAE4 (a1 Eiher) Ao & Tkat Iotemet
v Store Search Results connachan (or aach should ba downlosded in its antiraty bafora viewng).
Subtotal: 0
BT) WMV Files1 (% resclution video) MR (full resolution video)
= v T
T View 3t double-size (200%); press Alt+2 in Windows Madia View at normal siza (100%): press Ctrl=3 in VLC Madia Blayar, or
)i p ()z p v
Player, or Ctrl 14 in VLC Media Player. We recommend viewing AlLTZ in Winduves Media Player, We revomimend using VLC Media
with Windows Media Player or VLC Media Player. Mayer or Quicktime, although Windows Media Mayer can be made
to play MP4 filee 2= vell,
Clock/Speed Timing:
Question or Topic Details wHY M4
Lanfiguring typical clock sattings. A B
Answered by Jeff Martin oibatizied. & ump4d
uration: O
LoMD 1.0 MD
llow da you pause a cog? s i W
answarad by 188 Martin z U‘{_“-"g"ﬂ \,'27 ump4d
R 1.6 MB 1.6 MB
Multipla Propallar chips drvan by tha sama clock?)
Arswered by Chip Geaiosy Safiyich sam = zmp4
uratian o:
1.0 MB 1.0 MB
What is the proiected speed of the Propeller 22 , i .
Answerad hy Chip Gracey o3 ::Jusa.u";] ump4d
R 06 MB 0.5 MB
Propeliar 7: Ona instruction per cinck cyrla? i
Answered by Chip Gracey 03/17/03 Sam -] nmpd
uratian |4
27TMB 27T ME
What is the average speed of the Propeller 2's hardware multiphy? . P e
Arswmaresd by Chips Gracay 03/12/0a e =] nmp4d
uratien Bt 0.5 MA 0.4 MR
Propelier 7 P11 stahility, rinck switching, and granularity. o
Answered by Chip Gracey O3/17/09 Jam B nmpd
ki 2.4 MR 2.4 MR >
il er el 7 A
Titeriel 100

Figure 2-28 Propeller Webinars (www.parallax.com/go/webinar).

Summary

Together we built our own object that evolved into a building block other developers
could use. Along the way, we learned about methods, I/O, loops, decisions, timing, and
single-core versus multicore processing. The next chapter will build up your object
debugging skills, and then you’ll have the foundation you need to dive into the many
fascinating projects that fill the remainder of this book.

www.parallax.com/go/webinar

EXERCISES 49

Exercises

To further your learning experience, we recommend trying the following exercises on
your own:

1 Explore the Propeller Library and Demos included with the Propeller Tool. Compile
and run as many as possible, and take the time to study the code.

2 Modify the examples we built to perform tasks of your choice. Can you make an
application that performs three or four different tasks at once?

3 Log on to the Propeller Forum and read through, and even post to, some of the recent
threads.

This page intentionally left blank

DEBUGGING CODE FOR

MULTIPLE CORES

Andy Lindsay

The chapter title, “Debugging Code for Multiple Cores,” might sound a little like
a computer science or engineering course topic that students struggle through and
then wax poetic about how hard it was later in life. If that’s the kind of challenge
you were looking for, sorry, you won’t find it here. As with application development,
debugging multicore applications with the Propeller microcontroller is typically easier
than debugging equivalent single-core, time-sliced implementations. The Propeller
microcontroller’s architecture, programming language, and object design conventions
all work together to minimize the likelihood of coding errors (aka bugs). They also help
keep any coding errors that do sneak in on the surface where they are easier to spot. In
addition, there are a number of healthy coding habits that help prevent multiprocessor
coding mistakes, as well as software packages, useful objects, and techniques you can
use to reduce the time it takes to find and correct coding errors. These preventative
measures, software packages, and bug finding and correcting techniques are the focus
of this chapter as it introduces the following:

B Propeller features that simplify debugging

B Object design guidelines for preventing multiprocessing bugs
B Common multiprocessor coding mistakes

B Survey of Propeller debugging tools

B Debugging tools applied to a multiprocessing problem

The most common root cause of coding errors that do make their way into Propeller

multicore applications is our natural tendency to forget that segments of the application
code get executed in parallel. Thinking in multiprocessing terms seems like it should

51

52

DEBUGGING CODE FOR MULTIPLE CORES

be a simple thing to remember, but especially at first, it’s all too easy to forget.
Once forgotten, obvious bugs can start to seem subtle and difficult to find, at least
until the results of some test provides the necessary reminder. So, start your parallel
processing-think memory exercises as you go through this chapter by keeping in mind
that segments of multicore Propeller application code get executed in parallel by more
than one cog.

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_03.

Propeller Features That Simplify
Debugging

The Propeller microcontroller’s architecture, programming language, and design
conventions that object authors adhere to don’t just simplify application development—
they help prevent a myriad of coding errors that could otherwise plague application
developers.

ARCHITECTURE THAT PREVENTS BUGS

While designing the Propeller microcontroller, one of Chip Gracey’s first and fore-
most goals was to distill its design so that the rules for accomplishing any task would
be simple and straightforward. Two examples where this design approach prevents a
variety of bugs are in I/O pin and memory access.

There are some multicore microcontroller designs where each processor has direct
access to only its own bank of I/O pins, so extra communication steps are necessary
for a core to interact with an I/O pin outside of its bank. In contrast, with the Propeller
chip, any cog or group of cogs can influence any Propeller microcontroller I/O pin or
group of I/O pins at any time. Each cog has its own output and direction registers for
all I/O pins, and to make I/O pin states follow a simple set of rules, all the cogs’ I/O pin
direction and output settings pass through the top set of OR gates shown in Fig. 3-1.
With this arrangement, if one cog sets an I/O pin register bit to output, a different cog
can still leave its I/O pin direction register bit set to input, and even monitor the state
of the I/O pin to find out what signals the other cog is transmitting.

The rule for multiple cogs controlling outputs is also simple. If one or more cogs
control the same I/O pin output, a cog sending a high (binary 1 in the output register
bit) will win and the I/O pin will be set high, even if other cogs have binary Os in the
same output register bits. This scheme makes it possible for one cog to modulate higher-
speed on/off carrier signals that another cog is transmitting. Whenever the modulating
cog sends a high signal, the carrier signal’s low signals don’t make it through. When
the modulating cog sends a low signal, the carrier’s high and low signals can make it
through. Figure 3-2 shows an example where the upper trace is the signal from two cogs

Pin Directions

Pin Qutputs

Counter B + PLL
Video Generator

I¥O Output Reg.
I/O Direction Reg.

Counter A+ PLL

512 X 32
RAM

Processor

Counter A + PLL

Video Generator

1/0 Output Reg.
I/O Direction Reg.

Counter B + PLL

512X 32
RAM

Processor

Counter A+ PLL

Counter B + PLL
Video Generator

110 Qutput Reg.
I/O Direction Reg.

512X 32
RAM

Processor

S|z
z||T
+||+
<||o
Bl|ls
5 5
2|l 2
[&] | [&]

5|| 9|
ENFE LA
2ll5|ls
3|l 2l|5
(Dga,
g(|1°||a
g12|le

N
Ty

>l

r v

[[e]
Pins

%]
oo

324
Pin Inputs

Y

Figure 3-1

Block diagram excerpt—shared I/O pin access.

— Vertical
CH1 2v/DIVY
CH2 2v/DIV

—~Horizontal -
1ms/DIV

B0KS/s

] =

[SETTINGS] BMF)

Figure 3-2 Signal modulation with two cogs sharing I/O pin access.

53

54

DEBUGGING CODE FOR MULTIPLE CORES

sharing an I/O pin and the lower trace is a copy of the modulator cog’s signal, which
stops the upper trace’s carrier signal whenever it’s high.

Low-level main memory access collisions are another example of a potential debugging
problem that could have been left to the programmer to prevent. Memory access collisions
can occur if two processors attempt to access the same 32-bit long in memory at the same
instant. Low-level memory access collisions are prevented in the Propeller microcontroller
by giving each cog Main RAM access in the round-robin fashion shown in Fig. 3-3.
This completely eliminates the possibility of low-level memory collisions because each
cog takes its turn accessing memory elements. This also frees the application from any
concerns about taking turns at accessing individual memory elements and immensely
simplifies the code. In addition to 32 K bytes (8 K longs) of Main RAM, each cog has its
own 2 K bytes (512 longs) of Cog RAM. Each cog has exclusive access to its own Cog
RAM, without taking turns, which can be useful for speed-optimized processes.

Even though the Propeller chip’s architecture has eliminated the possibility of low-level
main memory access collisions, there can still be timing issues with cogs reading from
or writing to groups of memory elements during the same time period. In that case, one
cog might get half old and half new values, as the other cog is busy updating the same
group of memory elements. So, the Propeller microcontroller’s main memory has eight
semaphore bits, called locks, which simplify the task of making sure that one cog doesn’t
try to read a group of variables at the same time another cog is updating them.

Communication between cogs is another design puzzle that has a variety of solutions,
some of which could have made coding complex and bug-prone. With the Propeller
microcontroller, cogs can exchange information through the Propeller chip’s Main
RAM. Again, since each cog gets sequential access to individual memory elements,
bugs as a result of low-level memory contention are not possible, and lock bits built into

System
Counter

Hub and Cog Interaction

Figure 3-3 Block diagram excerpt—round
robin main memory access.

PROPELLER FEATURES THAT SIMPLIFY DEBUGGING 55

main memory for updating groups of memory elements make this a simple, effective,
and bug free means for cogs to exchange information.

One last but not-so-obvious characteristic of the Propeller chip’s design that helps
reduce bugs is its hardware symmetry. As mentioned in Chap. 1, all cogs are physically
identical, rather than being specialized for certain functions. This allows any cog to be
as useful as any other cog for any task, so it is not necessary to assign code to a specific
chunk of hardware (unless desired, as the Spin language certainly provides for this).
This allows the next available cog to handle whatever task is presented, and there is no
need to determine if unexpected behavior is a result of code waiting for, or running in,
a certain type of core.

LANGUAGE AND PROGRAMMING CONVENTIONS
THAT HELP PREVENT BUGS

The Spin and Assembly languages incorporated into the free Propeller Tool software
have a number of features that help prevent multiprocessing bugs. For example, the lock
bits have a set of commands that help manage main memory. Likewise, there is a set
of cog commands to give the developer more control over the hardware, if desired. For
example, a cog can be selected and launched by number with coginit so the developer
can know exactly which process is happening where. Code can also be launched into the
next available cog with cogneuw, report where it landed with cogid, and a cog’s ID used
with cogstop will shut down that cog. An arrangement similar to this is incorporated
into objects available from the Propeller Object Exchange because it allows building
block objects to launch code into the next available cog without interfering with any
cogs that the application might already be using.

The object-based nature of the language was introduced in the previous chapter,
and one of the most important features of building block objects from the Propeller
Library and Propeller Object Exchange is that their authors (usually) follow con-
ventions established by Parallax to make their interfaces simple and trouble-free.
Building block objects that launch code into other cogs take care of most of the
multiprocessing grunt work. Good objects also contain methods that simplify con-
figuring the process executed by the other cog and exchanging information with
the top-level application object.

By convention, a building block object that launches a process into another cog has a
Start method that receives configuration information and contains code that launches
the new cog. It also has a Stop method for shutting the process down and freeing the
cog. In many cases, these objects also have methods that provide a data exchange inter-
face. In other cases, the parent object passes information about its variable addresses
so that the object can directly write to and/or read from the parent object’s variables.
Regardless of whether a method interface, a memory sharing interface, or some com-
bination of the two gets used, the building block object that manages the process keeps
the interface simple.

For example, let’s consider the Propeller Library’s Keyboard object. After its Start
method gets called, its assembly language code takes care of communication with the

56 DEBUGGING CODE FOR MULTIPLE CORES

keyboard and buffers any key presses. The application object can then call the Keyboard
object’s Key method to get the latest buffered key press (or find out that there’s nothing
in the buffer) whenever it has time. Another example is the Sigma-Delta ADC object,
which is designed to provide digitized analog voltage measurements and will be dem-
onstrated in Chap. 4. This object’s Start method is designed to receive a variable’s
memory address from the application object. After the Sigma-Delta ADC object’s Start
method launches its analog-to-digital conversion code into a new cog, that cog always
copies the most recently measured voltage value into the parent object’s variable that
was set aside for receiving the measurements. In either case, the end result is a simple
and easy-to-use interface, which, in turn, tends to be bug-free because all the application
code has to concern itself with using the information it has received.

Object Design Guidelines

If you plan on designing a building block object that launches a process into another
cog, either for an application or for the Propeller Object Exchange, the Start and Stop
method conventions introduced in the previous chapter are crucial, and designing a
bug-free interface that communicates with other objects through shared memory is
equally crucial.

Figure 3-4 shows an example of one of the ways a building block object that has
launched a process (either a method or some assembly code) into another cog can
provide an information bridge between the two cogs. This figure shows a call to one
of its methods after the object has launched a cog as a result of a call the application
object made to the building block object’s Start method. To exchange information

Application Object Building Block Object

CaFI Start F'arameter(s) Start Launch into
Method Method Other Cog
Return
Value
Global
Variables
Parameter(s) - / \
Method Publlc Method
Cail Method or ASM
Return
Value Public
Method

Cog Main RAM Other Cog

Figure 3-4 Cog information exchanges with object.method calls.

OBJECT DESIGN GUIDELINES 57

with the other cog, the application object calls one of the building block object’s public
methods. Code in those public methods is executed by the same cog that is executing
the application object’s method call. Those public methods can exchange informa-
tion with the method(s) or assembly language (ASM) code executed by the other cog
through the building block object’s global variables. Propeller Library examples of
objects that use this approach include the Parallax Serial Terminal, Keyboard, and
Mouse objects.

Another common design for building block objects that manage processes in other
cogs involves a Start method with one or more parameters that receive one or more
memory addresses from the application object. The process that the building block object
launches into another cog then uses those memory addresses to update and/or moni-
tor one or more variables in the application object. Instead of object.Start (valuel,
value2,...), the application object would use object.Start(@varaiblel,
@variable2,...) to pass addresses of variables that the application object expects
the building block object to work with. Once the building block object knows these
addresses, it passes them to a Spin or assembly language coded process that it launches
into another cog. That process can use the memory addresses to read directly from
and/or write directly to the application object’s variables, as shown in Fig. 3-5. Code
in the application object can then exchange information with the other cog by simply
writing to or reading from those variables.

There are also other, less common variations and combinations of the two cog infor-
mation exchange arrangements just discussed. In some cases, they are used to support
a particular set of tasks the building block object is expected to perform. Regardless
of the design, the building block object’s documentation should be clear about how it
exchanges information with the application object, and the documentation should also
be clear about what its public methods do, the parameters they expect, and the values
that return. The object should also be thoroughly tested to verify that it functions as
advertised.

Application Object Building Block Object
Address ”
Call Start | —22rameter(s) o (grant
Method €—— | Method
Return
Val
aue Launch into

. Other Cog
Main Global
RAM Variables N

¢ | |

Cog Other Cog

Figure 3-5 Cog information exchanges through mutually
agreed-upon memory addresses.

58

DEBUGGING CODE FOR MULTIPLE CORES

Common Multiprocessor
Coding Mistakes

Thanks to the Propeller microcontroller’s architecture, programming languages, and
object design conventions, the list of common multiprocessor-related coding mistakes
is small. This section explains each potential coding mistake, its symptoms, and how
to correct it.

Missing call to a building block object’s Start method
Missing I/O pin assignments in a new cog

Incorrect timing interval

Code that missed the waitcnt boat

Only one cog is waiting while the other has moved on
Memory collisions

Wrong address passed to a method

Forgotten literal # indicator for assembly language code
Method in a new cog outgrows stack space

STUCK ON A BUG?

If you get stuck on a bug with test code using multiple processors, go through this
list because chances are, the bug will be one of these items. The community at
http://forums.parallax.com can also help with finding bugs and correcting misun-
derstandings about how a given piece of code works.

MISSING CALL TO A BUILDING BLOCK
OBJECT’S START METHOD

A building block object that executes code in more than one cog typically has a Start
method, which has to be called to launch the code that does its job into another cog. The
Test Float32.spin application object utilizes three building block objects to calculate
and display the floating point tangents of integer-degree values entered into the Parallax
Serial Terminal’s transmit windowpane. Two of those building block objects have Start
methods: Parallax Serial Terminal and Float32. The Parallax Serial Terminal object
has assembly code that gets launched into another cog that maintains full duplex serial
communication with the PC, and the Float32 object also has assembly code that gets
launched into another cog to optimize the speed of its floating point calculations. In
addition to Start and Stop methods, both of these objects have methods that take care
of exchanging information with code running in the other cogs. These methods all use
the scheme shown in Fig. 3-4, accepting parameters and passing them to the other cogs,
or returning results they got from other cogs, or both. The third building block object is

http://forums.parallax.com

COMMON MULTIPROCESSOR CODING MISTAKES 59

FloatString. This object is a collection of useful methods for converting floating point
values to their string representations, but it does not use any other cogs to make these
conversions, so it does not have a Start method.

Each of these objects has documentation comments that explain how to use their
methods.

v Load Test Float32.spin into the Propeller Tool software.

v Use Run — Compile Current — View Info F8 to compile the application.

v Use the upper-left Object View pane to open the Parallax Serial Terminal, Float32,
and FloatString objects.

v Click the Documentation radio button to display each of the building block objects
in documentation view.

The Parallax Serial Terminal and Float32 objects both have Start and Stop meth-
ods listed first in their Object Interface sections, which is visible in the Propeller Tool
software’s documentation view. This is your clue that each of these objects launches
code into another cog and that your application code will have to call each of their
Start methods before calling any of their other methods. If an object’s Start method
is optional, its documentation comments should state that, and if it doesn’t, a call to the
object’s Start method is probably required for the object to do its job(s).

" Test Float32.spin

CON
_clkmode = xtall + plll6x " Crystal and PLL settings
_xinfreq = 5_000_000 " 5 MHz crystal x 16 = 80 MHz
0BJ
pst : "Parallax Serial Terminal” ' Serial communication object
fp : "Float32” " Floating point object
fs : "FloatString” " Floating point string object

PUB Go | degrees, radians, cosine

pst.Start (115200) " Start Parallax Serial Terminal cog
fp.Start " Don't forget this!!!
pst.Str (String ("Calculate tangent...', pst#NL))
repeat
pst.Str (String (pst#NL, "Enter degrees: "))
degrees := pst.Decln " Get degrees

" Convert to floating point radians.
radians := fp.Radians (fp.FFloat (degrees))
" Calculate tangent.

60 DEBUGGING CODE FOR MULTIPLE CORES

cosine := fp.Tan(radians)

" Display result.

pst.Str (String ("Tangent = "))
pst.Str (fs.FloatToString (cosine))

Test Float32.spin works correctly since both of the Parallax Serial Terminal and
Float32 objects’ Start methods were called, and the interactive testing for floating
point tangent calculations is shown in Fig. 3-6. To enter numbers into the Parallax Serial
Terminal, click the Transmit windowpane before typing. The Transmit windowpane is
just above the Receive windowpane, and in Fig. 3-6, it has the number 30 entered into it,
just above the first line in the Receive windowpane that reads “Calculate tangent...”

If this is your first time running the Parallax Serial Terminal, follow these
instructions:

v Make sure your Propeller chip’s power supply and programming cable are connected.

v In the Propeller Tool software, make sure Test Float32 is the active tab. In other
words, the Test Float32.spin code should be displayed in the Propeller Tool soft-
ware’s Editor pane.

v In the Propeller Tool software, click Run — Identify Hardware... F7 and make a
note of which COM port the Propeller is connected to. Then, in the Parallax Serial

.- Parallax Serial Terminal - [Disabled. Cli... |- [O]X|

30 =

Calculate tangent... fj

Enter degrees: &0

Tangent = 1.732071
Enter degrees: 45

Tangent = 1

Enter dediees: 30

4] I na
Com Part: BaudRate: o 7% [T DTA [T ATS
[comis =1[115200 %] = g o pom o C15

Frefs... I Elear I Palize

r; Echo On

Figure 3-6 Calculate tangents with a floating point
object.

COMMON MULTIPROCESSOR CODING MISTAKES 61

Terminal software, set the Com Port drop-down menu to the COM port number you
got from the Propeller Tool software.

v Set the Baud Rate drop-down to 115200 so that it matches the baud rate passed to the
Parallax Serial Terminal object’s Start method with the Test Float32.spin object’s
pst.Start (115200) method call.

When you load a program that exchanges messages with the Parallax Serial Terminal
into the Propeller chip with the Propeller Tool, make sure to click the Parallax Serial
Terminal’s Enable button as soon as the Propeller Tool software’s Communication
window reports Loading... If you wait too long to click the Parallax Serial Terminal’s
Enable button, it might have already missed the Propeller chip’s user prompt messages.
If that’s the case and you used the Propeller Tool’s Run — Compile Current — Load
RAM FI10 to load the program, you will have to reload it. If you instead used Run —
Compile Current — Load EEPROM F11, you can restart the program by either pressing
and releasing the Propeller board’s Reset button or double-clicking the Parallax Serial
Terminal’s DTR check box.

v Make sure there is a check mark in the Parallax Serial Terminal’s Echo On check box.
This displays text you type in the Parallax Serial Terminal’s Transmit windowpane
in its Receive windowpane.

v In the Propeller Tool software, load the program into the Propeller chip, either with
Run — Compile Current — Load RAM F10 or with Run — Compile Current —
Load EEPROM F11.

v As soon as the Propeller Tool software’s Communication window reports Loading...,
click the Parallax Serial Terminal’s Enable button. Don’t wait, or you might miss the
user prompts.

The Parallax Serial Terminal’s transmit windowpane is shown in Fig. 3-6 with the
number 30 typed into it. It’s just above the “Calculate tangent...” title in the Receive
windowpane’s display.

v Type integer-degree angles into the Parallax Serial Terminal’s transmit windowpane,
pressing the Enter key after each one. Try 30 first and verify that your results match
Fig. 3-6.

The Propeller will reply by sending the string representation of the floating point
result to the Parallax Serial Terminal.

Creating the “forgot to call a building block object’s Start method” bug is
easy. Just comment one or both of the Start method calls in Test Float32.spin
by placing an apostrophe to the left. Then, load the modified application into the
Propeller chip. Since the application depends on the processes the two objects run
in other cogs, either one will create rather drastic bug symptoms. Commenting pst.
Start (115200) will prevent any serial messages from being exchanged between
the Propeller chip and Parallax Serial Terminal. Commenting fp.Start will cause
all the floating point results to be 0.

62

DEBUGGING CODE FOR MULTIPLE CORES

AUTHOR’S NOTE

Forgetting to include Start method calls in application objects is my most common
coding error. In fact, when I demonstrated on the fly floating point examples during
Propeller seminars and trainings, I forgot the fp.start method call on several
occasions. Each time, it took a couple of minutes to figure out, and it’s amazing
how time seems to slow to a standstill while trying to find and fix a bug in front
of a large group.

Even after all that, I still almost forgot to include “Missing call to a building block
object’s Start method” in my list of most common multiprocessor coding mistakes.

MISSING 1/0 ASSIGNMENTS IN NEW COG

As mentioned in the “Architecture that Prevents Bugs” section, each cog has its own
I/O direction and output registers. Although this solves a number of potential problems,
there is still one coding error people tend to make: configuring the I/O from the wrong
cog. The typical form of this error is code that makes I/O pin configurations in one cog,
and then launches a new cog to control the I/O pins. If the new cog isn’t also configured
to work with those I/0 pins, it won’t be able to control their output states. Furthermore,
if the cog that launched the new cog never needed to control the I/O pins, there isn’t
any reason for its code to make any I/O pin configurations at all. In that case, the code
that the new cog executes is the only code that needs to configure its I/O registers. For
example, IO Declaration Bug.spin launches a process that is supposed to make a light
blink, but the light emitting diode (LED) in Fig. 3-7 won’t blink because the I/O pin was
set to output by the cog executing the Go method. The cog executing the Blinker method
never sets its I/O pin to output, so it has no control over the I/O pin’s output state.

LIGHT AND PUSHBUTTON CIRCUITS

The light and pushbutton circuits in this section are explained in more detail in
“Propeller Education Kit Labs: Fundamentals”—4: I/O and Timing Basics Lab.
A more basic introduction to these circuits and examples of building them from
schematics is also included in early “What’s a Microcontroller?” chapters. Both
are free downloads from www.parallax.com.

P5
100 @

Figure 3-7 Blinking light
GND test circuit.

www.parallax.com

COMMON MULTIPROCESSOR CODING MISTAKES

" 10 Declaration Bug.spin

VAR

long stack[10]

PUB Go
dira[5] =1
cognew (Blinker, @stack)
repeat

PUB Blinker

repeat
louta[5]
waitent (clkfreq/4 + cnt)

" Array cog executing Blinker

" **xBUG PS5-output in the wrong cog
" Launch a new cog to control P5
" Optionally keep cog running

" Infinite loop

Invert P5 output register bit

" Delay for 1/4 s

63

This problem can be corrected by moving the I/O pin direction setting to the method

that is launched into the new cog.

’

I0 Declaration Bug (Fixed).spin
VAR
long stack[10]

PUB Go

cognew (Blinker, @stack)
repeat

PUB Blinker

dira[5] := 1
repeat
loutal[5]
waitent (clkfreq/4 + cnt)

" Array cog executing Blinker

Launch a new cog to control P5
Optionally keep cog running

" P5-output in the right cog

" Infinite loop

" Invert P5 output register bit
" Delay for 1/4 s

As an aside, adding pin and delay parameters to the Blinker method gives the Go
method some flexibility for setting I/O pin and delay.

" Other Cog Blinks Light.spin
VAR

long stack[10]

" Array cog executing Blinker

64

DEBUGGING CODE FOR MULTIPLE CORES

PUB Go
cognew (Blinker (5, clkfreq/4), @stack) " Launch new cog
repeat " Optionally keep this cog running
PUB Blinker (pin, delay) " Blink light method
diralpin] :=1 " Set I/0 pin to output
repeat " Repeat loop
waitcent (delay + cnt) " Delay 1/4 s
'outa[pin] " Invert I/0 pin output state

TIMING INTERVAL ERRORS

Although precise timing was not required for the last three blinking light code exam-
ples, there are many other situations where a precise time interval is crucial. Examples
include the Parallax Serial Terminal’s signaling for serial communication with the PC
and establishing a sample interval for taking sensor and signal measurements, which
will be utilized in the next chapter’s Sigma-Delta A/D conversion examples. The blink-
ing light example programs have two potential sources of “bugs” that contribute to an
inexact timing interval. First, they do not use a precise external clock, and second, code in
their waitent commands does not compensate for the time it takes other commands in
the repeat loop